Suppr超能文献

通过失真参数估计对多重和单一失真图像进行无意见盲质量评估

Opinion-Unaware Blind Quality Assessment of Multiply and Singly Distorted Images via Distortion Parameter Estimation.

作者信息

Zhang Yi, Chandler Damon M

出版信息

IEEE Trans Image Process. 2018 Jul 18. doi: 10.1109/TIP.2018.2857413.

Abstract

Over the past couple of decades, numerous image quality assessment (IQA) algorithms have been developed to estimate the quality of images that contain a single type of distortion. Although in practice, images can be contaminated by multiple distortions, previous research on quality assessment of multiply-distorted images is very limited. In this paper, we propose an efficient algorithm to blindly assess the quality of both multiply and singly distorted images based on predicting the distortion parameters using a bag of natural scene statistics (NSS) features. Our method, called MUltiply- and Singlydistorted Image QUality Estimator (MUSIQUE), operates via three main stages. In the first stage, a two-layer classification model is employed to identify the distortion types (i.e., Gaussian blur, JPEG compression, and white noise) that may exist in an image. In the second stage, specific regression models are employed to predict the three distortion parameters (i.e., σG for Gaussian blur, Q for JPEG compression, and σN for white noise) by learning the different NSS features for different distortion types and combinations. In the final stage, the three estimated distortion parameter values are mapped and combined into an overall quality estimate based on quality-mapping curves and the most-apparent-distortion strategy. Experimental results tested on three multiply-distorted and seven singly-distorted image quality databases demonstrate that the proposed MUSIQUE algorithm can achieve better/competitive performance as compared to other state-of-the-art FR/NR IQA algorithms.

摘要

在过去几十年里,已经开发了许多图像质量评估(IQA)算法来估计包含单一类型失真的图像质量。然而在实际中,图像可能会受到多种失真的影响,而此前关于多重失真图像质量评估的研究非常有限。在本文中,我们提出了一种高效算法,基于使用一组自然场景统计(NSS)特征预测失真参数,来盲目评估多重失真和单重失真图像的质量。我们的方法称为多重和单重失真图像质量估计器(MUSIQUE),通过三个主要阶段运行。在第一阶段,采用两层分类模型来识别图像中可能存在的失真类型(即高斯模糊、JPEG压缩和白噪声)。在第二阶段,通过学习不同失真类型和组合的不同NSS特征,采用特定的回归模型来预测三个失真参数(即高斯模糊的σG、JPEG压缩的Q和白噪声的σN)。在最后阶段,基于质量映射曲线和最明显失真策略,将三个估计的失真参数值进行映射并组合成一个整体质量估计。在三个多重失真和七个单重失真图像质量数据库上进行的实验结果表明,与其他现有最先进的全参考/无参考IQA算法相比,所提出的MUSIQUE算法能够实现更好/具有竞争力的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验