Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland.
Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland.
Curr Opin Genet Dev. 2018 Dec;53:60-69. doi: 10.1016/j.gde.2018.06.016. Epub 2018 Jul 18.
Approximate Bayesian Computation (ABC) is a flexible statistical tool widely applied to addressing a variety of questions regarding the origin and evolution of humans. The significant growth of genomic scale data from diverse geographic populations has facilitated the use of ABC in modelling the complex processes that underlie human demography and local adaptation. However, a fundamental issue still remains in how to efficiently capture patterns of genetic variation with a set of summary statistics in order to achieve better approximation of Bayesian inference. Here, we review recent advances in ABC methodology and its applications for human population genomics, with a particular focus on optimal tuning of ABC approaches for different types of genetic data and different sets of evolutionary parameters.
近似贝叶斯计算 (ABC) 是一种灵活的统计工具,广泛应用于解决有关人类起源和进化的各种问题。来自不同地理群体的基因组规模数据的显著增长促进了 ABC 在建模人类人口统计学和局部适应背后的复杂过程中的应用。然而,如何有效地利用一组汇总统计量来捕捉遗传变异模式,以更好地实现贝叶斯推断的近似,仍然是一个基本问题。在这里,我们回顾了 ABC 方法及其在人类群体基因组学中的应用的最新进展,特别关注 ABC 方法针对不同类型的遗传数据和不同的进化参数集的最佳调整。