Suppr超能文献

用于研究分叉处液体栓子分裂的工程气道模型:方向和气道大小的影响。

Engineered Airway Models to Study Liquid Plug Splitting at Bifurcations: Effects of Orientation and Airway Size.

作者信息

Copploe Antonio, Vatani Morteza, Amini Rouzbeh, Choi Jae-Won, Tavana Hossein

机构信息

Department of Biomedical Engineering, The University of Akron, Akron, OH 44325.

Department of Mechanical Engineering, The University of Akron, Akron, OH 44325.

出版信息

J Biomech Eng. 2018 Sep 1;140(9). doi: 10.1115/1.4040456.

Abstract

Delivery of biological fluids, such as surfactant solutions, into lungs is a major strategy to treat respiratory disorders including respiratory distress syndrome that is caused by insufficient or dysfunctional natural lung surfactant. The instilled solution forms liquid plugs in lung airways. The plugs propagate downstream in airways by inspired air or ventilation, continuously split at airway bifurcations to smaller daughter plugs, simultaneously lose mass from their trailing menisci, and eventually rupture. A uniform distribution of the instilled biofluid in lung airways is expected to increase the treatments success. The uniformity of distribution of instilled liquid in the lungs greatly depends on the splitting of liquid plugs between daughter airways, especially in the first few generations from which airways of different lobes of lungs emerge. To mechanistically understand this process, we developed a bioengineering approach to computationally design three-dimensional bifurcating airway models using morphometric data of human lungs, fabricate physical models, and examine dynamics of liquid plug splitting. We found that orientation of bifurcating airways has a major effect on the splitting of liquid plugs between daughter airways. Changing the relative gravitational orientation of daughter tubes with respect to the horizontal plane caused a more asymmetric splitting of liquid plugs. Increasing the propagation speed of plugs partially counteracted this effect. Using airway models of smaller dimensions reduced the asymmetry of plug splitting. This work provides a step toward developing delivery strategies for uniform distribution of therapeutic fluids in the lungs.

摘要

将生物流体(如表面活性剂溶液)输送到肺部是治疗包括呼吸窘迫综合征在内的呼吸系统疾病的主要策略,呼吸窘迫综合征是由天然肺表面活性剂不足或功能失调引起的。注入的溶液在肺气道中形成液体栓子。这些栓子通过吸入的空气或通气在气道中向下游传播,在气道分支处不断分裂成更小的子栓子,同时从其后缘弯月面损失质量,最终破裂。预期注入的生物流体在肺气道中的均匀分布会提高治疗成功率。注入液体在肺部的分布均匀性很大程度上取决于液体栓子在子气道之间的分裂,尤其是在肺部不同叶的气道出现的最初几代。为了从机制上理解这个过程,我们开发了一种生物工程方法,利用人体肺部的形态测量数据通过计算设计三维分支气道模型,制作物理模型,并研究液体栓子分裂的动力学。我们发现分支气道的方向对子气道之间液体栓子的分裂有主要影响。改变子管相对于水平面的相对重力方向会导致液体栓子更不对称的分裂。提高栓子的传播速度部分抵消了这种影响。使用较小尺寸的气道模型可减少栓子分裂的不对称性。这项工作为开发治疗性流体在肺部均匀分布的输送策略迈出了一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验