Suppr超能文献

基于高精度地表建模的华北地区 XCO 模拟与分析。

Simulation and analysis of XCO in North China based on high accuracy surface modeling.

机构信息

State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.

University of Chinese Academy of Sciences, Beijing, 100049, China.

出版信息

Environ Sci Pollut Res Int. 2018 Sep;25(27):27378-27392. doi: 10.1007/s11356-018-2683-x. Epub 2018 Jul 22.

Abstract

As an important cause of global warming, CO concentrations and their changes have aroused worldwide concern. Establishing explicit understanding of the spatial and temporal distributions of CO concentrations at regional scale is a crucial technical problem for climate change research. High accuracy surface modeling (HASM) is employed in this paper using the output of the CO concentrations from weather research and forecasting-chemistry (WRF-CHEM) as the driving fields, and the greenhouse gases observing satellite (GOSAT) retrieval XCO data as the accuracy control conditions to obtain high accuracy XCO fields. WRF-CHEM is an atmospheric chemical transport model designed for regional studies of CO concentrations. Verified by ground- and space-based observations, WRF-CHEM has a limited ability to simulate the conditions of CO concentrations. After conducting HASM, we obtain a higher accuracy distribution of the CO in North China than those calculated using the classical Kriging and inverse distance weighted (IDW) interpolation methods, which were often used in past studies. The cross-validation also shows that the averaging mean absolute error (MAE) of the results from HASM is 1.12 ppmv, and the averaging root mean square error (RMSE) is 1.41 ppmv, both of which are lower than those of the Kriging and IDW methods. This study also analyses the space-time distributions and variations of the XCO from the HASM results. This analysis shows that in February and March, there was the high value zone in the southern region of study area relating to heating in the winter and the dense population. The XCO concentration decreased by the end of the heating period and during the growing period of April and May, and only some relatively high value zones continued to exist.

摘要

作为全球变暖的一个重要原因,CO 浓度及其变化引起了全世界的关注。明确了解 CO 浓度在区域尺度上的时空分布是气候变化研究的一个关键技术问题。本文采用高精度面模式(HASM),以 CO 浓度的输出结果作为驱动场,以温室气体观测卫星(GOSAT)反演 XCO 数据作为精度控制条件,建立了高精度的 XCO 场。WRF-CHEM 是一个专为 CO 浓度的区域研究而设计的大气化学输送模型。经地面和空间观测验证,WRF-CHEM 模拟 CO 浓度的能力有限。经过 HASM 处理后,我们得到的华北地区 CO 分布比过去研究中常用的经典克里金插值和反距离加权插值方法(IDW)更准确。交叉验证还表明,HASM 结果的平均绝对误差(MAE)为 1.12ppm,平均均方根误差(RMSE)为 1.41ppm,均低于克里金插值和 IDW 方法。本研究还分析了 HASM 结果的 XCO 时空分布和变化。分析表明,在 2 月和 3 月,研究区域南部存在高值区,与冬季取暖和人口密集有关。CO 浓度在取暖期结束和 4 月和 5 月的生长期间下降,只有一些相对较高的高值区继续存在。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40cf/6132398/2eebd67a4927/11356_2018_2683_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验