Laboratory of Advanced Catalysis for Sustainability, School of Chemistry , The University of Sydney , Sydney 2006 , Australia.
College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , China.
ACS Appl Mater Interfaces. 2018 Aug 1;10(30):24963-24968. doi: 10.1021/acsami.8b06977. Epub 2018 Jul 23.
Mesoporous metals with high surface area hold promise for a variety of catalytic applications, especially for the reduction of CO to value-added products. This study has used a novel mesoporous rhodium (Rh) nanoparticles, which were recently developed via a simple wet chemical reduction approach ( Nat. Commun. 2017, 8, 15581) as catalyst for CO methanation. Highly efficient performance and selectivity for methane formation are achieved due to their controllable crystallinity, high porosity, high surface energy, and large number of atomic steps distributions. The mesoporous Rh nanoparticles, possessing the largest surface area (69 m g), exhibit a substantially higher reaction rate (5.28 × 10 mol g s) than the nonporous Rh nanoparticles (1.28 × 10 mol g s). Our results indicate the extensive use of mesoporous metals in heterogeneous catalysis processes.
具有高表面积的介孔金属在各种催化应用中具有广阔的前景,特别是在将 CO 还原为高附加值产品方面。本研究使用了一种新型的介孔铑(Rh)纳米粒子,该纳米粒子是通过简单的湿化学还原方法(Nat. Commun. 2017, 8, 15581)最近开发的,用作 CO 甲烷化的催化剂。由于其可控的结晶度、高孔隙率、高表面能和大量的原子台阶分布,该介孔 Rh 纳米粒子表现出高效的性能和对甲烷形成的选择性。具有最大表面积(69 m g)的介孔 Rh 纳米粒子的反应速率(5.28 × 10 mol g s)明显高于无孔 Rh 纳米粒子(1.28 × 10 mol g s)。我们的结果表明,介孔金属在多相催化过程中有广泛的应用。