Suppr超能文献

Lin28a 过表达揭示了 Erk 信号在关节软骨发育中的作用。

Lin28a overexpression reveals the role of Erk signaling in articular cartilage development.

机构信息

Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA

Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.

出版信息

Development. 2018 Aug 2;145(15):dev162594. doi: 10.1242/dev.162594.

Abstract

Adult articular cartilage shows limited tissue turnover, and therefore development of the proper structure of articular cartilage is crucial for life-long joint function. However, the mechanism by which the articular cartilage structure is developmentally regulated is poorly understood. In this study, we show evidence that activation of extracellular signal-regulated kinases (Erk1/2) in articular chondrocyte progenitors during developmental stages control articular cartilage thickness. We found that overexpression of Lin28a, an RNA-binding protein that regulates organismal growth and metabolism, in articular chondrocyte progenitor cells upregulated Erk signaling and increased articular cartilage thickness. Overexpression of a constitutively active Kras mimicked Lin28a overexpression, and inhibition of Erk signaling during embryonic stages normalized the cartilage phenotype of both Kras- and Lin28a-overexpressing mice. These results suggest that articular cartilage thickness is mainly determined during the process of embryonic synovial joint development, which is positively regulated by Erk signaling.

摘要

成人关节软骨组织更新能力有限,因此,关节软骨的适当结构的发育对于终身关节功能至关重要。然而,关节软骨结构如何在发育过程中受到调控的机制尚不清楚。在这项研究中,我们提供了证据表明,在发育阶段,细胞外信号调节激酶(Erk1/2)在关节软骨细胞前体细胞中的激活控制着关节软骨的厚度。我们发现,在关节软骨细胞前体细胞中过表达 Lin28a(一种调节机体生长和代谢的 RNA 结合蛋白)可上调 Erk 信号通路并增加关节软骨厚度。过表达组成型激活的 Kras 可模拟 Lin28a 的过表达,而在胚胎阶段抑制 Erk 信号通路可使 Kras 和 Lin28a 过表达的小鼠的软骨表型正常化。这些结果表明,关节软骨厚度主要在胚胎滑膜关节发育过程中决定,Erk 信号通路正向调节关节软骨厚度。

相似文献

1
Lin28a overexpression reveals the role of Erk signaling in articular cartilage development.
Development. 2018 Aug 2;145(15):dev162594. doi: 10.1242/dev.162594.
2
Snorc is a novel cartilage specific small membrane proteoglycan expressed in differentiating and articular chondrocytes.
Osteoarthritis Cartilage. 2011 Aug;19(8):1026-35. doi: 10.1016/j.joca.2011.04.016. Epub 2011 May 17.
4
Lin28a induces SOX9 and chondrocyte reprogramming via HMGA2 and blunts cartilage loss in mice.
Sci Adv. 2022 Aug 26;8(34):eabn3106. doi: 10.1126/sciadv.abn3106.
5
Kdm6b regulates cartilage development and homeostasis through anabolic metabolism.
Ann Rheum Dis. 2017 Jul;76(7):1295-1303. doi: 10.1136/annrheumdis-2016-210407. Epub 2017 Mar 17.
6
BMP receptor signaling is required for postnatal maintenance of articular cartilage.
PLoS Biol. 2004 Nov;2(11):e355. doi: 10.1371/journal.pbio.0020355. Epub 2004 Oct 19.
8
Cartilage-specific deletion of Alk5 gene results in a progressive osteoarthritis-like phenotype in mice.
Osteoarthritis Cartilage. 2017 Nov;25(11):1868-1879. doi: 10.1016/j.joca.2017.07.010. Epub 2017 Jul 14.
9
Lactoferrin activates BMP7 gene expression through the mitogen-activated protein kinase ERK pathway in articular cartilage.
Biochem Biophys Res Commun. 2013 Feb 1;431(1):31-5. doi: 10.1016/j.bbrc.2012.12.111. Epub 2013 Jan 4.
10
Expression of Sox9 and type IIA procollagen during attempted repair of articular cartilage damage in a transgenic mouse model of osteoarthritis.
Arthritis Rheum. 2001 Apr;44(4):947-55. doi: 10.1002/1529-0131(200104)44:4<947::AID-ANR152>3.0.CO;2-4.

引用本文的文献

1
RNA-binding proteins regulate osteoarthritis via RNA metabolism regulation.
Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2024 Dec 28;49(12):1973-1982. doi: 10.11817/j.issn.1672-7347.2024.240261.
2
MiRNA Let-7i-5p-Contained Small Extracellular Vesicles from Macrophages Induce Nucleus Pulposus Cell Senescence via Targeting LIN28A.
Int J Nanomedicine. 2025 Feb 18;20:2163-2179. doi: 10.2147/IJN.S482646. eCollection 2025.
3
Hyperplastic Human Macromass Cartilage for Joint Regeneration.
Adv Sci (Weinh). 2023 Sep;10(26):e2301833. doi: 10.1002/advs.202301833. Epub 2023 Jul 3.
5
MicroRNAs in cartilage development and dysplasia.
Bone. 2020 Nov;140:115564. doi: 10.1016/j.bone.2020.115564. Epub 2020 Jul 31.
6
Joints in the appendicular skeleton: Developmental mechanisms and evolutionary influences.
Curr Top Dev Biol. 2019;133:119-151. doi: 10.1016/bs.ctdb.2018.11.002. Epub 2018 Dec 10.

本文引用的文献

1
The LIN28/let-7 Pathway in Cancer.
Front Genet. 2017 Mar 28;8:31. doi: 10.3389/fgene.2017.00031. eCollection 2017.
2
Ras signaling regulates osteoprogenitor cell proliferation and bone formation.
Cell Death Dis. 2016 Oct 13;7(10):e2405. doi: 10.1038/cddis.2016.314.
3
RNA-binding protein Lin28 in cancer and immunity.
Cancer Lett. 2016 May 28;375(1):108-113. doi: 10.1016/j.canlet.2016.02.050. Epub 2016 Mar 2.
4
Lin28 and let-7 in cell metabolism and cancer.
Transl Pediatr. 2015 Jan;4(1):4-11. doi: 10.3978/j.issn.2224-4336.2015.01.05.
7
Identification of a Prg4-expressing articular cartilage progenitor cell population in mice.
Arthritis Rheumatol. 2015 May;67(5):1261-73. doi: 10.1002/art.39030.
8
MicroRNAs involved in bone formation.
Cell Mol Life Sci. 2014 Dec;71(24):4747-61. doi: 10.1007/s00018-014-1700-6. Epub 2014 Aug 10.
9
MicroRNAs in cartilage development, homeostasis, and disease.
Curr Osteoporos Rep. 2014 Dec;12(4):410-9. doi: 10.1007/s11914-014-0229-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验