Institute of Earth Sciences, University of Lausanne, Géopolis, 1015, Lausanne, Switzerland.
Swiss Geocomputing Centre, University of Lausanne, Géopolis, 1015, Lausanne, Switzerland.
Sci Rep. 2018 Jul 24;8(1):11116. doi: 10.1038/s41598-018-29485-5.
Ubiquitous observations of channelised fluid flow in the form of pipes or chimney-like features in sedimentary sequences provide strong evidence for significant transient permeability-generation in the subsurface. Understanding the mechanisms and dynamics for spontaneous flow localisation into fluid conductive chimneys is vital for natural fluid migration and anthropogenic fluid and gas operations, and in waste sequestration. Yet no model exists that can predict how, when, or where these conduits form. Here we propose a physical mechanism and show that pipes and chimneys can form spontaneously through hydro-mechanical coupling between fluid flow and solid deformation. By resolving both fluid flow and shear deformation of the matrix in three dimensions, we predict fluid flux and matrix stress distribution over time. The pipes constitute efficient fluid pathways with permeability enhancement exceeding three orders of magnitude. We find that in essentially impermeable shale (10 m), vertical fluid migration rates in the high-permeability pipes or chimneys approach rates expected in permeable sandstones (10 m). This previously unidentified fluid focusing mechanism bridges the gap between observations and established conceptual models for overcoming and destroying assumed impermeable barriers. This mechanism therefore has a profound impact on assessing the evolution of leakage pathways in natural gas emissions, for reliable risk assessment for long-term subsurface waste storage, or CO sequestration.
在沉积序列中以管道或烟囱状特征形式普遍存在的束状流体流动的观测结果为地下空间中瞬态渗透率的显著产生提供了有力证据。理解自然流体运移和人为流体及气体作业以及废物隔离中流体导流通向局部化的机制和动力学至关重要。然而,目前还没有能够预测这些管道何时以及在何处形成的模型。在这里,我们提出了一种物理机制,并表明管道和烟囱可以通过流体流动和固体变形之间的水力机械耦合自发形成。通过在三维空间中解析流体流动和基质的剪切变形,我们可以预测随时间变化的流体通量和基质应力分布。这些管道构成了高效的流体通道,渗透率增强超过三个数量级。我们发现,在基本上不可渗透的页岩(10μm)中,高渗透率管道或烟囱中的垂直流体迁移速率接近可渗透砂岩中的预期迁移速率(10μm)。这种以前未被识别的流体聚焦机制弥合了观察结果与克服和破坏假定不可渗透屏障的现有概念模型之间的差距。因此,该机制对评估天然气排放中泄漏途径的演化、长期地下废物储存或 CO2 封存的可靠风险评估具有深远影响。