Suppr超能文献

木质素玻璃化转变的动力学。

Dynamics of the lignin glass transition.

机构信息

UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, P.O. Box 2008, Tennessee 37831, USA.

出版信息

Phys Chem Chem Phys. 2018 Aug 8;20(31):20504-20512. doi: 10.1039/c8cp03144d.

Abstract

The dynamics of lignin, a complex and heterogeneous major plant cell-wall macromolecule, is of both fundamental and practical importance. Lignin is typically heated to temperatures above its glass transition to facilitate its industrial processing. We performed molecular dynamics simulations to investigate the segmental (α) relaxation of lignin, the dynamical process that gives rise to the glass transition. It is found that lignin dynamics involves mainly internal motions below Tg, while segmental inter-molecular motions are activated above Tg. The segments whose mobility is enhanced above Tg consist of 3-5 lignin monomeric units. The temperature dependence of the lignin segmental relaxation time changes from Arrhenius below Tg to Vogel-Fulcher-Tamman above Tg. This change in temperature dependence is determined by the underlying energy landscape being restricted below Tg but exhibiting multiple minima above Tg. The Q-dependence of the relaxation time is found to obey a power-law up to Qmax, indicative of sub-diffusive motion of lignin above Tg. Temperature and hydration affect the segmental relaxation similarly. Increasing hydration or temperature leads to: (1) the α process starting earlier, i.e. the beta process becomes shortened, (2) Qmax decreasing, i.e. the lengthscale above which subdiffusion is observed increases, and (3) the number of monomers constituting a segment increasing, i.e. the motions that lead to the glass transition become more collective. The above findings provide molecular-level understanding of the technologically important segmental motions of lignin and demonstrate that, despite the heterogeneous and complex structure of lignin, its segmental dynamics can be described by concepts developed for chemically homogeneous polymers.

摘要

木质素是一种复杂且异质的主要植物细胞壁大分子,其动力学具有基础和实际的重要性。木质素通常在其玻璃化转变温度以上加热,以促进其工业加工。我们进行了分子动力学模拟,以研究木质素的分段(α)弛豫,这是导致玻璃化转变的动力学过程。研究发现,木质素动力学主要涉及 Tg 以下的内部运动,而 Tg 以上的分段分子间运动被激活。Tg 以上流动性增强的片段由 3-5 个木质素单体单元组成。木质素分段弛豫时间的温度依赖性在 Tg 以下呈 Arrhenius 型,在 Tg 以上呈 Vogel-Fulcher-Tammann 型。这种温度依赖性的变化是由 Tg 以下受限的基础能量景观决定的,但在 Tg 以上表现出多个最小值。发现弛豫时间的 Q 依赖性在 Qmax 之前遵循幂律,表明 Tg 以上木质素的扩散运动呈亚扩散。温度和水合作用对分段弛豫的影响相似。增加水合或温度会导致:(1)α过程更早开始,即β过程缩短,(2)Qmax 减小,即观察到亚扩散的长度尺度增加,以及(3)构成一个片段的单体数量增加,即导致玻璃化转变的运动变得更加集体。这些发现提供了木质素技术上重要的分段运动的分子水平理解,并证明尽管木质素具有异质和复杂的结构,但可以用为化学均聚物开发的概念来描述其分段动力学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验