Suppr超能文献

在存在终末事件的情况下,从比较临床研究中量化多个事件时间观察的治疗效果总和。

Quantifying the totality of treatment effect with multiple event-time observations in the presence of a terminal event from a comparative clinical study.

机构信息

Harvard Medical School, Boston, Massachusetts.

Stanford University School of Medicine, Stanford, California.

出版信息

Stat Med. 2018 Nov 10;37(25):3589-3598. doi: 10.1002/sim.7907. Epub 2018 Jul 25.

Abstract

To evaluate the totality of one treatment's benefit/risk profile relative to an alternative treatment via a longitudinal comparative clinical study, the timing and occurrence of multiple clinical events are typically collected during the patient's follow-up. These multiple observations reflect the patient's disease progression/burden over time. The standard practice is to create a composite endpoint from the multiple outcomes, the timing of the occurrence of the first clinical event, to evaluate the treatment via the standard survival analysis techniques. By ignoring all events after the composite outcome, this type of assessment may not be ideal. Various parametric or semiparametric procedures have been extensively discussed in the literature for the purposes of analyzing multiple event-time data. Many existing methods were developed based on extensive model assumptions. When the model assumptions are not plausible, the resulting inferences for the treatment effect may be misleading. In this article, we propose a simple, nonparametric inference procedure to quantify the treatment effect, which has an intuitive clinically meaningful interpretation. We use the data from a cardiovascular clinical trial for heart failure to illustrate the procedure. A simulation study is also conducted to evaluate the performance of the new proposal.

摘要

为了通过纵向比较临床研究评估一种治疗方法相对于另一种治疗方法的总体获益/风险情况,通常会在患者随访期间收集多个临床事件的时间和发生情况。这些多次观察反映了患者随时间推移的疾病进展/负担。标准做法是从多个结局中创建一个复合终点,即第一个临床事件发生的时间,然后通过标准生存分析技术评估治疗效果。通过忽略复合终点之后的所有事件,这种评估可能并不理想。文献中广泛讨论了各种参数或半参数程序,以分析多次事件时间数据。许多现有的方法都是基于广泛的模型假设而开发的。当模型假设不可信时,对治疗效果的推断可能会产生误导。在本文中,我们提出了一种简单的、非参数推断程序来量化治疗效果,这种方法具有直观的临床意义解释。我们使用心力衰竭的心血管临床试验数据来说明该程序。还进行了一项模拟研究来评估新提案的性能。

相似文献

2
Estimation on conditional restricted mean survival time with counting process.用计数过程估计条件受限平均生存时间。
J Biopharm Stat. 2021 Mar;31(2):141-155. doi: 10.1080/10543406.2020.1814799. Epub 2020 Sep 6.

引用本文的文献

4
Causal inference with recurrent and competing events.具有复发和竞争事件的因果推断。
Lifetime Data Anal. 2024 Jan;30(1):59-118. doi: 10.1007/s10985-023-09594-8. Epub 2023 May 12.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验