Suppr超能文献

利用两个生存函数的综合差异来量化治疗对比,以用于设计、监测和分析比较性临床研究。

Utilizing the integrated difference of two survival functions to quantify the treatment contrast for designing, monitoring, and analyzing a comparative clinical study.

机构信息

Department of Preventive Medicine, Northwestern University, Chicago, IL, USA.

出版信息

Clin Trials. 2012 Oct;9(5):570-7. doi: 10.1177/1740774512455464. Epub 2012 Aug 22.

Abstract

BACKGROUND

Consider a comparative, randomized clinical study with a specific event time as the primary end point. In the presence of censoring, standard methods of summarizing the treatment difference are based on Kaplan-Meier curves, the logrank test, and the point and interval estimates via Cox's procedure. Moreover, for designing and monitoring the study, one usually utilizes an event-driven scheme to determine the sample sizes and interim analysis time points.

PURPOSE

When the proportional hazards (PHs) assumption is violated, the logrank test may not have sufficient power to detect the difference between two event time distributions. The resulting hazard ratio estimate is difficult, if not impossible, to interpret as a treatment contrast. When the event rates are low, the corresponding interval estimate for the 'hazard ratio' can be quite large due to the fact that the interval length depends on the observed numbers of events. This may indicate that there is not enough information for making inferences about the treatment comparison even when there is no difference between two groups. This situation is quite common for a postmarketing safety study. We need an alternative way to quantify the group difference.

METHODS

Instead of quantifying the treatment group difference using the hazard ratio, we consider an easily interpretable and model-free parameter, the integrated survival rate difference over a prespecified time interval, as an alternative. We present the inference procedures for such a treatment contrast. This approach is purely nonparametric and does not need any model assumption such as the PHs. Moreover, when we deal with equivalence or noninferiority studies and the event rates are low, our procedure would provide more information about the treatment difference. We used a cardiovascular trial data set to illustrate our approach.

RESULTS

The results using the integrated event rate differences have a heuristic interpretation for the treatment difference even when the PHs assumption is not valid. When the event rates are low, for example, for the cardiovascular study discussed in this article, the procedure for the integrated event rate difference provides tight interval estimates in contrast to those based on the event-driven inference method.

LIMITATIONS

The design of a trial with the integrated event rate difference may be more complicated than that using the event-driven procedure. One may use simulation to determine the sample size and the estimated duration of the study.

CONCLUSIONS

The procedure discussed in this article can be a useful alternative to the standard PHs method in the survival analysis.

摘要

背景

考虑一项具有特定事件时间作为主要终点的比较随机临床试验。在存在删失的情况下,总结治疗差异的标准方法基于 Kaplan-Meier 曲线、对数秩检验和 Cox 过程的点估计和区间估计。此外,为了设计和监测研究,通常利用事件驱动方案来确定样本量和中间分析时间点。

目的

当比例风险(PHs)假设不成立时,对数秩检验可能没有足够的能力检测到两种事件时间分布之间的差异。由此产生的危险比估计值难以解释,甚至不可能解释为治疗对比。当事件率较低时,由于区间长度取决于观察到的事件数量,因此对应于“危险比”的区间估计值可能会相当大。这可能表明即使两组之间没有差异,也没有足够的信息进行治疗比较的推断。这种情况在上市后安全性研究中很常见。我们需要一种替代方法来量化组间差异。

方法

我们不使用危险比来量化治疗组差异,而是考虑一种易于解释且无模型的参数,即预设时间间隔内的综合生存率差异,作为替代。我们提出了这种治疗对比的推断程序。这种方法是纯粹的非参数方法,不需要任何模型假设,如 PHs。此外,当我们处理等效性或非劣效性研究且事件率较低时,我们的程序将提供有关治疗差异的更多信息。我们使用心血管试验数据集来说明我们的方法。

结果

即使 PHs 假设不成立,使用综合事件率差异的结果对治疗差异具有启发式解释。例如,当事件率较低时,对于本文讨论的心血管研究,与基于事件驱动推断方法相比,综合事件率差异的程序提供了紧密的区间估计。

局限性

使用综合事件率差异的试验设计可能比使用事件驱动程序更复杂。可以使用模拟来确定样本量和研究的估计持续时间。

结论

本文讨论的程序可以成为生存分析中标准 PHs 方法的有用替代方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce76/3705645/a6a6cb850420/nihms478273f1.jpg

相似文献

引用本文的文献

4
Causal interpretation of the hazard ratio in randomized clinical trials.随机临床试验中风险比的因果解释。
Clin Trials. 2024 Oct;21(5):623-635. doi: 10.1177/17407745241243308. Epub 2024 Apr 28.
8
Omnibus test for restricted mean survival time based on influence function.基于影响函数的限制平均生存时间的综合检验。
Stat Methods Med Res. 2023 Jun;32(6):1082-1099. doi: 10.1177/09622802231158735. Epub 2023 Apr 4.
10
Reduction in number to treat versus number needed to treat.减少治疗人数与需要治疗人数。
BMC Med Res Methodol. 2021 Mar 9;21(1):48. doi: 10.1186/s12874-021-01246-5.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验