Department of Preventive Medicine, Northwestern University, Chicago, IL, USA.
Clin Trials. 2012 Oct;9(5):570-7. doi: 10.1177/1740774512455464. Epub 2012 Aug 22.
Consider a comparative, randomized clinical study with a specific event time as the primary end point. In the presence of censoring, standard methods of summarizing the treatment difference are based on Kaplan-Meier curves, the logrank test, and the point and interval estimates via Cox's procedure. Moreover, for designing and monitoring the study, one usually utilizes an event-driven scheme to determine the sample sizes and interim analysis time points.
When the proportional hazards (PHs) assumption is violated, the logrank test may not have sufficient power to detect the difference between two event time distributions. The resulting hazard ratio estimate is difficult, if not impossible, to interpret as a treatment contrast. When the event rates are low, the corresponding interval estimate for the 'hazard ratio' can be quite large due to the fact that the interval length depends on the observed numbers of events. This may indicate that there is not enough information for making inferences about the treatment comparison even when there is no difference between two groups. This situation is quite common for a postmarketing safety study. We need an alternative way to quantify the group difference.
Instead of quantifying the treatment group difference using the hazard ratio, we consider an easily interpretable and model-free parameter, the integrated survival rate difference over a prespecified time interval, as an alternative. We present the inference procedures for such a treatment contrast. This approach is purely nonparametric and does not need any model assumption such as the PHs. Moreover, when we deal with equivalence or noninferiority studies and the event rates are low, our procedure would provide more information about the treatment difference. We used a cardiovascular trial data set to illustrate our approach.
The results using the integrated event rate differences have a heuristic interpretation for the treatment difference even when the PHs assumption is not valid. When the event rates are low, for example, for the cardiovascular study discussed in this article, the procedure for the integrated event rate difference provides tight interval estimates in contrast to those based on the event-driven inference method.
The design of a trial with the integrated event rate difference may be more complicated than that using the event-driven procedure. One may use simulation to determine the sample size and the estimated duration of the study.
The procedure discussed in this article can be a useful alternative to the standard PHs method in the survival analysis.
考虑一项具有特定事件时间作为主要终点的比较随机临床试验。在存在删失的情况下,总结治疗差异的标准方法基于 Kaplan-Meier 曲线、对数秩检验和 Cox 过程的点估计和区间估计。此外,为了设计和监测研究,通常利用事件驱动方案来确定样本量和中间分析时间点。
当比例风险(PHs)假设不成立时,对数秩检验可能没有足够的能力检测到两种事件时间分布之间的差异。由此产生的危险比估计值难以解释,甚至不可能解释为治疗对比。当事件率较低时,由于区间长度取决于观察到的事件数量,因此对应于“危险比”的区间估计值可能会相当大。这可能表明即使两组之间没有差异,也没有足够的信息进行治疗比较的推断。这种情况在上市后安全性研究中很常见。我们需要一种替代方法来量化组间差异。
我们不使用危险比来量化治疗组差异,而是考虑一种易于解释且无模型的参数,即预设时间间隔内的综合生存率差异,作为替代。我们提出了这种治疗对比的推断程序。这种方法是纯粹的非参数方法,不需要任何模型假设,如 PHs。此外,当我们处理等效性或非劣效性研究且事件率较低时,我们的程序将提供有关治疗差异的更多信息。我们使用心血管试验数据集来说明我们的方法。
即使 PHs 假设不成立,使用综合事件率差异的结果对治疗差异具有启发式解释。例如,当事件率较低时,对于本文讨论的心血管研究,与基于事件驱动推断方法相比,综合事件率差异的程序提供了紧密的区间估计。
使用综合事件率差异的试验设计可能比使用事件驱动程序更复杂。可以使用模拟来确定样本量和研究的估计持续时间。
本文讨论的程序可以成为生存分析中标准 PHs 方法的有用替代方法。