Institute of Physiology and Anatomy, German Sport University Cologne , Cologne , Germany.
J Appl Physiol (1985). 2018 Oct 1;125(4):1150-1164. doi: 10.1152/japplphysiol.01058.2017. Epub 2018 Jul 26.
The aim of the present study was to investigate whether a single-compartment (SCM) and a multi-compartment (MCM) venous return model will produce significantly different time-delaying and distortive effects on pulmonary oxygen uptake (V̇o) responses with equal cardiac outputs (Q̇) and muscle oxygen uptake (V̇o) inputs. For each model, 64 data sets were simulated with alternating Q̇ and V̇o kinetics-time constants (τ) ranging from 10 to 80 s-as responses to pseudorandom binary sequence work rate (WR) changes. Kinetic analyses were performed by using cross-correlation functions (CCFs) between WR with V̇o and V̇o. Higher maxima of the CCF courses indicate faster system responses-equal to smaller τ values of the variables of interest (e.g., τV̇o). The models demonstrated a highly significant relationship for the resulting V̇o responses ( r = 0.976, P < 0.001, n = 64). Both models showed significant differences between V̇o and V̇o kinetics for τV̇o ranging from 10 to 30 s ( P < 0.05 each). In addition, a significant difference in V̇o kinetics ( P < 0.05) between the models was observed for very fast V̇o kinetics (τ = 10 s). The combinations of fast Q̇ dynamics and slow V̇o kinetics yield distinct deviations in the resultant V̇o responses compared with V̇o kinetics. Therefore, the venous return models should be used with care and caution if the aim is to infer V̇o by means of V̇o kinetics. Finally, the resultant V̇o responses seem to be complex and most likely unpredictable if no cardiodynamic measurements are available in vivo. NEW & NOTEWORTHY A single-compartment and a multi-compartment venous return model were tested to see whether they result in different pulmonary oxygen uptake (V̇o) kinetics from equal cardiac output and muscle oxygen uptake (V̇o) kinetics. To infer V̇o kinetics by means of V̇o kinetics, both models should only be used for V̇o time constants ranging from 40 to 80 s. The resultant V̇o responses seem to be complex and most likely unpredictable if no cardiodynamic measurements are available.
本研究旨在探讨在相等心输出量(Q̇)和肌肉氧摄取量(V̇o)输入的情况下,单室(SCM)和多室(MCM)静脉回流模型是否会对肺氧摄取量(V̇o)反应产生显著不同的时滞和失真效应。对于每个模型,使用交替的 Q̇和 V̇o动力学时间常数(τ),范围从 10 到 80 s,模拟了 64 个数据集,作为对伪随机二进制序列工作率(WR)变化的响应。通过使用 WR 与 V̇o 和 V̇o 之间的互相关函数(CCF)进行动力学分析。更高的 CCF 课程最大值表示更快的系统响应-相当于感兴趣变量(例如,τV̇o)的更小τ值。该模型显示出与所得 V̇o 反应之间具有高度显著的关系(r = 0.976,P < 0.001,n = 64)。对于 τV̇o 范围从 10 到 30 s 的 V̇o 和 V̇o 动力学,两种模型均显示出显著差异(P < 0.05)。此外,对于非常快的 V̇o 动力学(τ = 10 s),在模型之间观察到 V̇o 动力学的显著差异(P < 0.05)。快速 Q̇动力学和缓慢 V̇o 动力学的组合会导致所得 V̇o 反应与 V̇o 动力学相比产生明显偏差。因此,如果目的是通过 V̇o 动力学推断 V̇o,则应谨慎使用静脉回流模型。最后,如果体内没有心动力学测量,则所得的 V̇o 反应似乎很复杂,并且极有可能无法预测。新的和值得注意的单室和多室静脉回流模型进行了测试,以观察它们是否导致相等的心输出量和肌肉氧摄取量(V̇o)动力学的不同肺氧摄取量(V̇o)动力学。为了通过 V̇o 动力学推断 V̇o 动力学,两个模型都应仅用于 V̇o 时间常数范围从 40 到 80 s。如果没有心动力学测量,则所得的 V̇o 反应似乎很复杂,并且极有可能无法预测。