Qian Pengjiang, Zhao Kaifa, Jiang Yizhang, Su Kuan-Hao, Deng Zhaohong, Wang Shitong, Muzic Raymond F
School of Digital Media, Jiangnan University, Wuxi, Jiangsu, PR China.
Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio, USA.
Knowl Based Syst. 2017 Aug 15;130:33-50. doi: 10.1016/j.knosys.2017.05.018. Epub 2017 May 19.
We study a novel fuzzy clustering method to improve the segmentation performance on the target texture image by leveraging the knowledge from a prior texture image. Two knowledge transfer mechanisms, i.e. (KL-PT) and (KL-PM) are first introduced as the bases. Applying them, the (KL-TFCM) method and its three-stage-interlinked framework, including knowledge extraction, knowledge matching, and knowledge utilization, are developed. There are two specific versions: KL-TFCM-c and KL-TFCM-f, i.e. the so-called crisp and flexible forms, which use the strategies of maximum matching degree and weighted sum, respectively. The significance of our work is fourfold: 1) Owing to the adjustability of referable degree between the source and target domains, KL-PT is capable of appropriately learning the insightful knowledge, i.e. the cluster prototypes, from the source domain; 2) KL-PM is able to self-adaptively determine the reasonable pairwise relationships of cluster prototypes between the source and target domains, even if the numbers of clusters differ in the two domains; 3) The joint action of KL-PM and KL-PT can effectively resolve the data inconsistency and heterogeneity between the source and target domains, e.g. the data distribution diversity and cluster number difference. Thus, using the three-stage-based knowledge transfer, the beneficial knowledge from the source domain can be extensively, self-adaptively leveraged in the target domain. As evidence of this, both KL-TFCM-c and KL-TFCM-f surpass many existing clustering methods in texture image segmentation; and 4) In the case of different cluster numbers between the source and target domains, KL-TFCM-f proves higher clustering effectiveness and segmentation performance than does KL-TFCM-c.
我们研究了一种新颖的模糊聚类方法,通过利用来自先验纹理图像的知识来提高目标纹理图像的分割性能。首先引入了两种知识转移机制,即(KL-PT)和(KL-PM)作为基础。应用它们,开发了(KL-TFCM)方法及其三阶段相互关联的框架,包括知识提取、知识匹配和知识利用。有两个具体版本:KL-TFCM-c和KL-TFCM-f,即所谓的清晰形式和灵活形式,它们分别使用最大匹配度和加权和的策略。我们工作的意义有四个方面:1)由于源域和目标域之间可参考程度的可调性,KL-PT能够从源域适当地学习有洞察力的知识,即聚类原型;2)KL-PM能够自适应地确定源域和目标域之间聚类原型的合理成对关系,即使两个域中的聚类数量不同;3)KL-PM和KL-PT的联合作用可以有效地解决源域和目标域之间的数据不一致性和异质性,例如数据分布多样性和聚类数量差异。因此,使用基于三阶段的知识转移,源域中的有益知识可以在目标域中得到广泛、自适应的利用。作为证明,KL-TFCM-c和KL-TFCM-f在纹理图像分割方面都超过了许多现有的聚类方法;4)在源域和目标域之间聚类数量不同的情况下,KL-TFCM-f比KL-TFCM-c具有更高的聚类有效性和分割性能。