Suppr超能文献

基于知识杠杆转移模糊均值的自适应聚类原型匹配纹理图像分割方法

Knowledge-leveraged transfer fuzzy -Means for texture image segmentation with self-adaptive cluster prototype matching.

作者信息

Qian Pengjiang, Zhao Kaifa, Jiang Yizhang, Su Kuan-Hao, Deng Zhaohong, Wang Shitong, Muzic Raymond F

机构信息

School of Digital Media, Jiangnan University, Wuxi, Jiangsu, PR China.

Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio, USA.

出版信息

Knowl Based Syst. 2017 Aug 15;130:33-50. doi: 10.1016/j.knosys.2017.05.018. Epub 2017 May 19.

Abstract

We study a novel fuzzy clustering method to improve the segmentation performance on the target texture image by leveraging the knowledge from a prior texture image. Two knowledge transfer mechanisms, i.e. (KL-PT) and (KL-PM) are first introduced as the bases. Applying them, the (KL-TFCM) method and its three-stage-interlinked framework, including knowledge extraction, knowledge matching, and knowledge utilization, are developed. There are two specific versions: KL-TFCM-c and KL-TFCM-f, i.e. the so-called crisp and flexible forms, which use the strategies of maximum matching degree and weighted sum, respectively. The significance of our work is fourfold: 1) Owing to the adjustability of referable degree between the source and target domains, KL-PT is capable of appropriately learning the insightful knowledge, i.e. the cluster prototypes, from the source domain; 2) KL-PM is able to self-adaptively determine the reasonable pairwise relationships of cluster prototypes between the source and target domains, even if the numbers of clusters differ in the two domains; 3) The joint action of KL-PM and KL-PT can effectively resolve the data inconsistency and heterogeneity between the source and target domains, e.g. the data distribution diversity and cluster number difference. Thus, using the three-stage-based knowledge transfer, the beneficial knowledge from the source domain can be extensively, self-adaptively leveraged in the target domain. As evidence of this, both KL-TFCM-c and KL-TFCM-f surpass many existing clustering methods in texture image segmentation; and 4) In the case of different cluster numbers between the source and target domains, KL-TFCM-f proves higher clustering effectiveness and segmentation performance than does KL-TFCM-c.

摘要

我们研究了一种新颖的模糊聚类方法,通过利用来自先验纹理图像的知识来提高目标纹理图像的分割性能。首先引入了两种知识转移机制,即(KL-PT)和(KL-PM)作为基础。应用它们,开发了(KL-TFCM)方法及其三阶段相互关联的框架,包括知识提取、知识匹配和知识利用。有两个具体版本:KL-TFCM-c和KL-TFCM-f,即所谓的清晰形式和灵活形式,它们分别使用最大匹配度和加权和的策略。我们工作的意义有四个方面:1)由于源域和目标域之间可参考程度的可调性,KL-PT能够从源域适当地学习有洞察力的知识,即聚类原型;2)KL-PM能够自适应地确定源域和目标域之间聚类原型的合理成对关系,即使两个域中的聚类数量不同;3)KL-PM和KL-PT的联合作用可以有效地解决源域和目标域之间的数据不一致性和异质性,例如数据分布多样性和聚类数量差异。因此,使用基于三阶段的知识转移,源域中的有益知识可以在目标域中得到广泛、自适应的利用。作为证明,KL-TFCM-c和KL-TFCM-f在纹理图像分割方面都超过了许多现有的聚类方法;4)在源域和目标域之间聚类数量不同的情况下,KL-TFCM-f比KL-TFCM-c具有更高的聚类有效性和分割性能。

相似文献

9
Generalized fuzzy C-means clustering algorithm with improved fuzzy partitions.具有改进模糊划分的广义模糊C均值聚类算法
IEEE Trans Syst Man Cybern B Cybern. 2009 Jun;39(3):578-91. doi: 10.1109/TSMCB.2008.2004818. Epub 2009 Jan 23.

引用本文的文献

本文引用的文献

2
Semi-Supervised SVM With Extended Hidden Features.半监督支持向量机与扩展隐藏特征。
IEEE Trans Cybern. 2016 Dec;46(12):2924-2937. doi: 10.1109/TCYB.2015.2493161. Epub 2015 Nov 9.
3
Image Segmentation Using Higher-Order Correlation Clustering.基于高阶相关聚类的图像分割。
IEEE Trans Pattern Anal Mach Intell. 2014 Sep;36(9):1761-74. doi: 10.1109/TPAMI.2014.2303095.
4
Collaborative fuzzy clustering from multiple weighted views.多加权视图的协同模糊聚类。
IEEE Trans Cybern. 2015 Apr;45(4):688-701. doi: 10.1109/TCYB.2014.2334595. Epub 2014 Jul 23.
5
Knowledge-leverage-based TSK Fuzzy System modeling.基于知识利用的 TSK 模糊系统建模。
IEEE Trans Neural Netw Learn Syst. 2013 Aug;24(8):1200-12. doi: 10.1109/TNNLS.2013.2253617.
7
Generalized fuzzy C-means clustering algorithm with improved fuzzy partitions.具有改进模糊划分的广义模糊C均值聚类算法
IEEE Trans Syst Man Cybern B Cybern. 2009 Jun;39(3):578-91. doi: 10.1109/TSMCB.2008.2004818. Epub 2009 Jan 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验