文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

GPseudoRank:一种用于单细胞排序的排列抽样器。

GPseudoRank: a permutation sampler for single cell orderings.

机构信息

MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK.

Alan Turing Institute, London, UK.

出版信息

Bioinformatics. 2019 Feb 15;35(4):611-618. doi: 10.1093/bioinformatics/bty664.


DOI:10.1093/bioinformatics/bty664
PMID:30052778
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6230469/
Abstract

MOTIVATION: A number of pseudotime methods have provided point estimates of the ordering of cells for scRNA-seq data. A still limited number of methods also model the uncertainty of the pseudotime estimate. However, there is still a need for a method to sample from complicated and multi-modal distributions of orders, and to estimate changes in the amount of the uncertainty of the order during the course of a biological development, as this can support the selection of suitable cells for the clustering of genes or for network inference. RESULTS: In applications to scRNA-seq data we demonstrate the potential of GPseudoRank to sample from complex and multi-modal posterior distributions and to identify phases of lower and higher pseudotime uncertainty during a biological process. GPseudoRank also correctly identifies cells precocious in their antiviral response and links uncertainty in the ordering to metastable states. A variant of the method extends the advantages of Bayesian modelling and MCMC to large droplet-based scRNA-seq datasets. AVAILABILITY AND IMPLEMENTATION: Our method is available on github: https://github.com/magStra/GPseudoRank. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

摘要

动机:许多伪时间方法为 scRNA-seq 数据提供了细胞排序的点估计。仍然有限数量的方法还对伪时间估计的不确定性进行建模。然而,仍然需要一种方法来从复杂和多峰的排序分布中进行采样,并估计在生物发育过程中排序不确定性的变化量,因为这可以支持选择适合基因聚类或网络推断的合适细胞。

结果:在对 scRNA-seq 数据的应用中,我们证明了 GPseudoRank 从复杂和多峰后验分布中进行采样的潜力,并能够识别生物过程中伪时间不确定性较低和较高的阶段。GPseudoRank 还能够正确识别抗病毒反应提前的细胞,并将排序中的不确定性与亚稳态联系起来。该方法的变体将贝叶斯建模和 MCMC 的优势扩展到基于大型液滴的 scRNA-seq 数据集。

可用性和实现:我们的方法可在 github 上获得:https://github.com/magStra/GPseudoRank。

补充信息:补充数据可在生物信息学在线获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e746/6378943/6163f030ef2f/bty664f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e746/6378943/cd1af5bfbe21/bty664f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e746/6378943/602d4654fb9b/bty664f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e746/6378943/c9e9904e2d50/bty664f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e746/6378943/840be9f8afaa/bty664f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e746/6378943/3813fa884854/bty664f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e746/6378943/6163f030ef2f/bty664f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e746/6378943/cd1af5bfbe21/bty664f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e746/6378943/602d4654fb9b/bty664f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e746/6378943/c9e9904e2d50/bty664f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e746/6378943/840be9f8afaa/bty664f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e746/6378943/3813fa884854/bty664f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e746/6378943/6163f030ef2f/bty664f6.jpg

相似文献

[1]
GPseudoRank: a permutation sampler for single cell orderings.

Bioinformatics. 2019-2-15

[2]
GPseudoClust: deconvolution of shared pseudo-profiles at single-cell resolution.

Bioinformatics. 2020-3-1

[3]
GrandPrix: scaling up the Bayesian GPLVM for single-cell data.

Bioinformatics. 2019-1-1

[4]
DIMM-SC: a Dirichlet mixture model for clustering droplet-based single cell transcriptomic data.

Bioinformatics. 2018-1-1

[5]
scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering.

Bioinformatics. 2023-2-14

[6]
Kpax3: Bayesian bi-clustering of large sequence datasets.

Bioinformatics. 2018-6-15

[7]
bayNorm: Bayesian gene expression recovery, imputation and normalization for single-cell RNA-sequencing data.

Bioinformatics. 2020-2-15

[8]
scGCL: an imputation method for scRNA-seq data based on graph contrastive learning.

Bioinformatics. 2023-3-1

[9]
scCNC: a method based on capsule network for clustering scRNA-seq data.

Bioinformatics. 2022-8-2

[10]
BLTSA: pseudotime prediction for single cells by branched local tangent space alignment.

Bioinformatics. 2023-2-3

引用本文的文献

[1]
Dying occurs as a defined molecular progression in rather than as nonspecific physiological collapse.

iScience. 2025-7-14

[2]
Analysis of single-cell and spatial transcriptomics in TNBC cell-cell interactions.

Front Immunol. 2025-2-26

[3]
PseudotimeDE: inference of differential gene expression along cell pseudotime with well-calibrated p-values from single-cell RNA sequencing data.

Genome Biol. 2021-4-29

[4]
redPATH: Reconstructing the Pseudo Development Time of Cell Lineages in Single-cell RNA-seq Data and Applications in Cancer.

Genomics Proteomics Bioinformatics. 2021-4

[5]
Site-Specific Amino Acid Distributions Follow a Universal Shape.

J Mol Evol. 2020-12

[6]
GPseudoClust: deconvolution of shared pseudo-profiles at single-cell resolution.

Bioinformatics. 2020-3-1

[7]
Single-Cell RNA Sequencing-Based Computational Analysis to Describe Disease Heterogeneity.

Front Genet. 2019-7-12

本文引用的文献

[1]
GrandPrix: scaling up the Bayesian GPLVM for single-cell data.

Bioinformatics. 2019-1-1

[2]
Stem Cell Differentiation as a Non-Markov Stochastic Process.

Cell Syst. 2017-9-27

[3]
Reversed graph embedding resolves complex single-cell trajectories.

Nat Methods. 2017-10

[4]
MATCHER: manifold alignment reveals correspondence between single cell transcriptome and epigenome dynamics.

Genome Biol. 2017-7-24

[5]
Order Under Uncertainty: Robust Differential Expression Analysis Using Probabilistic Models for Pseudotime Inference.

PLoS Comput Biol. 2016-11-21

[6]
Diffusion pseudotime robustly reconstructs lineage branching.

Nat Methods. 2016-8-29

[7]
Pseudotime estimation: deconfounding single cell time series.

Bioinformatics. 2016-10-1

[8]
SLICER: inferring branched, nonlinear cellular trajectories from single cell RNA-seq data.

Genome Biol. 2016-5-23

[9]
TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis.

Nucleic Acids Res. 2016-7-27

[10]
Wishbone identifies bifurcating developmental trajectories from single-cell data.

Nat Biotechnol. 2016-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索