Institute of NeuroScience (IoNS), System and Cognition Department, Université catholique de Louvain, Belgium; International Laboratory for Brain, Music and Sound Research (BRAMS), Université de Montréal, Canada.
Institute of NeuroScience (IoNS), System and Cognition Department, Université catholique de Louvain, Belgium; School of Mobile Information Engineering, Sun Yat-Sen University, China.
J Neurosci Methods. 2018 Oct 1;308:106-115. doi: 10.1016/j.jneumeth.2018.07.016. Epub 2018 Jul 24.
Many sensorimotor functions are intrinsically rhythmic, and are underlined by neural processes that are functionally distinct from neural responses related to the processing of transient events. EEG frequency tagging is a technique that is increasingly used in neuroscience to study these processes. It relies on the fact that perceiving and/or producing rhythms generates periodic neural activity that translates into periodic variations of the EEG signal. In the EEG spectrum, those variations appear as peaks localized at the frequency of the rhythm and its harmonics.
Many natural rhythms, such as music or dance, are not strictly periodic and, instead, show fluctuations of their period over time. Here, we introduce a time-warping method to identify non-strictly-periodic EEG activities in the frequency domain.
EEG time-warping can be used to characterize the sensorimotor activity related to the performance of self-paced rhythmic finger movements. Furthermore, the EEG time-warping method can disentangle auditory- and movement-related EEG activity produced when participants perform rhythmic movements synchronized to an acoustic rhythm. This is possible because the movement-related activity has different period fluctuations than the auditory-related activity.
With the classic frequency-tagging approach, rhythm fluctuations result in a spreading of the peaks to neighboring frequencies, to the point that they cannot be distinguished from background noise.
The proposed time-warping procedure is as a simple and effective mean to study natural non-strictly-periodic rhythmic neural processes such as rhythmic movement production, acoustic rhythm perception and sensorimotor synchronization.
许多感觉运动功能是内在有节奏的,其基础是神经过程,这些过程在功能上与与处理瞬态事件相关的神经反应不同。EEG 频率标记是一种在神经科学中越来越多地用于研究这些过程的技术。它依赖于这样一个事实,即感知和/或产生节奏会产生周期性的神经活动,从而转化为 EEG 信号的周期性变化。在 EEG 频谱中,这些变化表现为定位于节奏及其谐波频率的峰值。
许多自然节奏,如音乐或舞蹈,不是严格周期性的,而是随着时间的推移表现出其周期的波动。在这里,我们引入了一种时变方法来识别非严格周期性的 EEG 活动在频域中。
EEG 时变可用于表征与自主节奏手指运动表现相关的感觉运动活动。此外,EEG 时变方法可以区分参与者在与声音节奏同步进行节奏运动时产生的听觉和运动相关的 EEG 活动。这是可能的,因为运动相关的活动与听觉相关的活动的周期波动不同。
使用经典的频率标记方法,节奏波动会导致峰值扩散到相邻频率,以至于无法与背景噪声区分开来。
所提出的时变过程是研究自然非严格周期性节奏神经过程的一种简单有效的方法,例如节奏运动产生、声音节奏感知和感觉运动同步。