Suppr超能文献

脑电时间扭曲技术用于研究与节律性运动产生相关的非严格周期性脑电信号。

EEG time-warping to study non-strictly-periodic EEG signals related to the production of rhythmic movements.

机构信息

Institute of NeuroScience (IoNS), System and Cognition Department, Université catholique de Louvain, Belgium; International Laboratory for Brain, Music and Sound Research (BRAMS), Université de Montréal, Canada.

Institute of NeuroScience (IoNS), System and Cognition Department, Université catholique de Louvain, Belgium; School of Mobile Information Engineering, Sun Yat-Sen University, China.

出版信息

J Neurosci Methods. 2018 Oct 1;308:106-115. doi: 10.1016/j.jneumeth.2018.07.016. Epub 2018 Jul 24.

Abstract

BACKGROUND

Many sensorimotor functions are intrinsically rhythmic, and are underlined by neural processes that are functionally distinct from neural responses related to the processing of transient events. EEG frequency tagging is a technique that is increasingly used in neuroscience to study these processes. It relies on the fact that perceiving and/or producing rhythms generates periodic neural activity that translates into periodic variations of the EEG signal. In the EEG spectrum, those variations appear as peaks localized at the frequency of the rhythm and its harmonics.

NEW METHOD

Many natural rhythms, such as music or dance, are not strictly periodic and, instead, show fluctuations of their period over time. Here, we introduce a time-warping method to identify non-strictly-periodic EEG activities in the frequency domain.

RESULTS

EEG time-warping can be used to characterize the sensorimotor activity related to the performance of self-paced rhythmic finger movements. Furthermore, the EEG time-warping method can disentangle auditory- and movement-related EEG activity produced when participants perform rhythmic movements synchronized to an acoustic rhythm. This is possible because the movement-related activity has different period fluctuations than the auditory-related activity.

COMPARISON WITH EXISTING METHODS

With the classic frequency-tagging approach, rhythm fluctuations result in a spreading of the peaks to neighboring frequencies, to the point that they cannot be distinguished from background noise.

CONCLUSIONS

The proposed time-warping procedure is as a simple and effective mean to study natural non-strictly-periodic rhythmic neural processes such as rhythmic movement production, acoustic rhythm perception and sensorimotor synchronization.

摘要

背景

许多感觉运动功能是内在有节奏的,其基础是神经过程,这些过程在功能上与与处理瞬态事件相关的神经反应不同。EEG 频率标记是一种在神经科学中越来越多地用于研究这些过程的技术。它依赖于这样一个事实,即感知和/或产生节奏会产生周期性的神经活动,从而转化为 EEG 信号的周期性变化。在 EEG 频谱中,这些变化表现为定位于节奏及其谐波频率的峰值。

新方法

许多自然节奏,如音乐或舞蹈,不是严格周期性的,而是随着时间的推移表现出其周期的波动。在这里,我们引入了一种时变方法来识别非严格周期性的 EEG 活动在频域中。

结果

EEG 时变可用于表征与自主节奏手指运动表现相关的感觉运动活动。此外,EEG 时变方法可以区分参与者在与声音节奏同步进行节奏运动时产生的听觉和运动相关的 EEG 活动。这是可能的,因为运动相关的活动与听觉相关的活动的周期波动不同。

与现有方法的比较

使用经典的频率标记方法,节奏波动会导致峰值扩散到相邻频率,以至于无法与背景噪声区分开来。

结论

所提出的时变过程是研究自然非严格周期性节奏神经过程的一种简单有效的方法,例如节奏运动产生、声音节奏感知和感觉运动同步。

相似文献

1
EEG time-warping to study non-strictly-periodic EEG signals related to the production of rhythmic movements.
J Neurosci Methods. 2018 Oct 1;308:106-115. doi: 10.1016/j.jneumeth.2018.07.016. Epub 2018 Jul 24.
2
EEG Frequency-Tagging and Input-Output Comparison in Rhythm Perception.
Brain Topogr. 2018 Mar;31(2):153-160. doi: 10.1007/s10548-017-0605-8. Epub 2017 Nov 10.
3
Infants show enhanced neural responses to musical meter frequencies beyond low-level features.
Dev Sci. 2023 Sep;26(5):e13353. doi: 10.1111/desc.13353. Epub 2022 Dec 8.
4
Neural tracking of the musical beat is enhanced by low-frequency sounds.
Proc Natl Acad Sci U S A. 2018 Aug 7;115(32):8221-8226. doi: 10.1073/pnas.1801421115. Epub 2018 Jul 23.
5
What can we learn about beat perception by comparing brain signals and stimulus envelopes?
PLoS One. 2017 Feb 22;12(2):e0172454. doi: 10.1371/journal.pone.0172454. eCollection 2017.
7
Capturing with EEG the neural entrainment and coupling underlying sensorimotor synchronization to the beat.
Cereb Cortex. 2015 Mar;25(3):736-47. doi: 10.1093/cercor/bht261. Epub 2013 Oct 9.
9
Natural music evokes correlated EEG responses reflecting temporal structure and beat.
Neuroimage. 2020 Jul 1;214:116559. doi: 10.1016/j.neuroimage.2020.116559. Epub 2020 Jan 21.
10
EEG Oscillations Are Modulated in Different Behavior-Related Networks during Rhythmic Finger Movements.
J Neurosci. 2016 Nov 16;36(46):11671-11681. doi: 10.1523/JNEUROSCI.1739-16.2016.

引用本文的文献

1
Processing the fine-grained features of tactile textures involves the primary somatosensory cortex.
Imaging Neurosci (Camb). 2024 Oct 28;2. doi: 10.1162/imag_a_00341. eCollection 2024.
2
The trajectory of crime: Integrating mouse-tracking into concealed memory detection.
Behav Res Methods. 2025 Jan 27;57(2):78. doi: 10.3758/s13428-024-02594-y.
3
Measuring self-similarity in empirical signals to understand musical beat perception.
Eur J Neurosci. 2025 Jan;61(2):e16637. doi: 10.1111/ejn.16637.
4
Dynamics of the perception and EEG signals triggered by tonic warm and cool stimulation.
PLoS One. 2020 Apr 23;15(4):e0231698. doi: 10.1371/journal.pone.0231698. eCollection 2020.

本文引用的文献

1
Neural Oscillations: Sustained Rhythms or Transient Burst-Events?
Trends Neurosci. 2018 Jul;41(7):415-417. doi: 10.1016/j.tins.2018.04.004. Epub 2018 May 5.
4
Specific contributions of basal ganglia and cerebellum to the neural tracking of rhythm.
Cortex. 2017 Oct;95:156-168. doi: 10.1016/j.cortex.2017.08.015. Epub 2017 Aug 19.
5
Category-selective human brain processes elicited in fast periodic visual stimulation streams are immune to temporal predictability.
Neuropsychologia. 2017 Sep;104:182-200. doi: 10.1016/j.neuropsychologia.2017.08.010. Epub 2017 Aug 12.
6
Rhythmic entrainment source separation: Optimizing analyses of neural responses to rhythmic sensory stimulation.
Neuroimage. 2017 Feb 15;147:43-56. doi: 10.1016/j.neuroimage.2016.11.036. Epub 2016 Dec 1.
7
Uncovering the neural magnitude and spatio-temporal dynamics of natural image categorization in a fast visual stream.
Neuropsychologia. 2016 Oct;91:9-28. doi: 10.1016/j.neuropsychologia.2016.07.028. Epub 2016 Jul 25.
8
Enhanced brainstem and cortical encoding of sound during synchronized movement.
Neuroimage. 2016 Nov 15;142:231-240. doi: 10.1016/j.neuroimage.2016.07.015. Epub 2016 Jul 7.
9
Interpretations of Frequency Domain Analyses of Neural Entrainment: Periodicity, Fundamental Frequency, and Harmonics.
Front Hum Neurosci. 2016 Jun 6;10:274. doi: 10.3389/fnhum.2016.00274. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验