Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
Nat Genet. 2018 Aug;50(8):1132-1139. doi: 10.1038/s41588-018-0174-0. Epub 2018 Jul 27.
CRISPR-Cas genome editing creates targeted DNA double-strand breaks (DSBs) that are processed by cellular repair pathways, including the incorporation of exogenous DNA via single-strand template repair (SSTR). To determine the genetic basis of SSTR in human cells, we developed a coupled inhibition-cutting system capable of interrogating multiple editing outcomes in the context of thousands of individual gene knockdowns. We found that human Cas9-induced SSTR requires the Fanconi anemia (FA) pathway, which is normally implicated in interstrand cross-link repair. The FA pathway does not directly impact error-prone, non-homologous end joining, but instead diverts repair toward SSTR. Furthermore, FANCD2 protein localizes to Cas9-induced DSBs, indicating a direct role in regulating genome editing. Since FA is itself a genetic disease, these data imply that patient genotype and/or transcriptome may impact the effectiveness of gene editing treatments and that treatments biased toward FA repair pathways could have therapeutic value.
CRISPR-Cas 基因组编辑会在细胞修复途径中产生靶向的 DNA 双链断裂 (DSBs),包括通过单链模板修复 (SSTR) 掺入外源 DNA。为了确定 SSTR 在人类细胞中的遗传基础,我们开发了一种偶联抑制切割系统,能够在数千个单个基因敲低的背景下检测多种编辑结果。我们发现,人类 Cas9 诱导的 SSTR 需要范可尼贫血 (FA) 途径,该途径通常与链间交联修复有关。FA 途径不会直接影响易错、非同源末端连接,而是将修复导向 SSTR。此外,FANCD2 蛋白定位于 Cas9 诱导的 DSBs,表明其在调节基因组编辑中具有直接作用。由于 FA 本身就是一种遗传性疾病,这些数据表明患者的基因型和/或转录组可能会影响基因编辑治疗的效果,并且偏向 FA 修复途径的治疗可能具有治疗价值。