Suppr超能文献

CRISPR-Cas9 介导的基因组编辑中的 DNA 修复途径选择。

DNA Repair Pathway Choices in CRISPR-Cas9-Mediated Genome Editing.

机构信息

Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.

Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.

出版信息

Trends Genet. 2021 Jul;37(7):639-656. doi: 10.1016/j.tig.2021.02.008. Epub 2021 Apr 22.

Abstract

Many clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-based genome editing technologies take advantage of Cas nucleases to induce DNA double-strand breaks (DSBs) at desired locations within a genome. Further processing of the DSBs by the cellular DSB repair machinery is then necessary to introduce desired mutations, sequence insertions, or gene deletions. Thus, the accuracy and efficiency of genome editing are influenced by the cellular DSB repair pathways. DSBs are themselves highly genotoxic lesions and as such cells have evolved multiple mechanisms for their repair. These repair pathways include homologous recombination (HR), classical nonhomologous end joining (cNHEJ), microhomology-mediated end joining (MMEJ) and single-strand annealing (SSA). In this review, we briefly highlight CRISPR-Cas9 and then describe the mechanisms of DSB repair. Finally, we summarize recent findings of factors that can influence the choice of DNA repair pathway in response to Cas9-induced DSBs.

摘要

许多基于成簇规律间隔短回文重复序列(CRISPR)-CRISPR 相关蛋白 9(Cas9)的基因组编辑技术利用 Cas 核酸酶在基因组中的所需位置诱导 DNA 双链断裂(DSB)。随后,细胞 DSB 修复机制进一步处理 DSB,以引入所需的突变、序列插入或基因缺失。因此,基因组编辑的准确性和效率受细胞 DSB 修复途径的影响。DSB 本身是高度遗传毒性损伤,因此细胞已经进化出多种修复它们的机制。这些修复途径包括同源重组(HR)、经典非同源末端连接(cNHEJ)、微同源介导的末端连接(MMEJ)和单链退火(SSA)。在这篇综述中,我们简要介绍了 CRISPR-Cas9,然后描述了 DSB 修复的机制。最后,我们总结了最近发现的影响 Cas9 诱导的 DSB 后 DNA 修复途径选择的因素。

相似文献

1
DNA Repair Pathway Choices in CRISPR-Cas9-Mediated Genome Editing.
Trends Genet. 2021 Jul;37(7):639-656. doi: 10.1016/j.tig.2021.02.008. Epub 2021 Apr 22.
4
CRISPR/Cas9-Induced Double-Strand Break Repair in Arabidopsis Nonhomologous End-Joining Mutants.
G3 (Bethesda). 2017 Jan 5;7(1):193-202. doi: 10.1534/g3.116.035204.
6
Quantitative assessment of HR and NHEJ activities via CRISPR/Cas9-induced oligodeoxynucleotide-mediated DSB repair.
DNA Repair (Amst). 2018 Oct;70:67-71. doi: 10.1016/j.dnarep.2018.09.002. Epub 2018 Sep 6.
8
CRISPR/Cas-based precision genome editing via microhomology-mediated end joining.
Plant Biotechnol J. 2021 Feb;19(2):230-239. doi: 10.1111/pbi.13490. Epub 2020 Nov 9.
9
Precision genome editing in the CRISPR era.
Biochem Cell Biol. 2017 Apr;95(2):187-201. doi: 10.1139/bcb-2016-0137. Epub 2016 Sep 29.

引用本文的文献

5
Off-target effects in CRISPR-Cas genome editing for human therapeutics: Progress and challenges.
Mol Ther Nucleic Acids. 2025 Jul 17;36(3):102636. doi: 10.1016/j.omtn.2025.102636. eCollection 2025 Sep 9.
6
Recent applications, future perspectives, and limitations of the CRISPR-Cas system.
Mol Ther Nucleic Acids. 2025 Jul 17;36(3):102634. doi: 10.1016/j.omtn.2025.102634. eCollection 2025 Sep 9.
7
Revolution of Biotechnology with CRISPR.
Exp Mol Med. 2025 Jul;57(7):1353-1354. doi: 10.1038/s12276-025-01452-x. Epub 2025 Jul 31.
10
Simply cut out - Combining CRISPR/Cas9 RNPs and transiently selected telomere vectors for marker free-gene deletion in .
Front Genome Ed. 2025 Jul 2;7:1623963. doi: 10.3389/fgeed.2025.1623963. eCollection 2025.

本文引用的文献

1
Distinct pathways of homologous recombination controlled by the SWS1-SWSAP1-SPIDR complex.
Nat Commun. 2021 Jul 12;12(1):4255. doi: 10.1038/s41467-021-24205-6.
2
CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia. Reply.
N Engl J Med. 2021 Jun 10;384(23):e91. doi: 10.1056/NEJMc2103481.
3
Engineered materials for in vivo delivery of genome-editing machinery.
Nat Rev Mater. 2019 Nov;4:726-737. doi: 10.1038/s41578-019-0145-9. Epub 2019 Oct 4.
4
Impact of chromatin context on Cas9-induced DNA double-strand break repair pathway balance.
Mol Cell. 2021 May 20;81(10):2216-2230.e10. doi: 10.1016/j.molcel.2021.03.032. Epub 2021 Apr 12.
5
A Rad51-independent pathway promotes single-strand template repair in gene editing.
PLoS Genet. 2020 Oct 15;16(10):e1008689. doi: 10.1371/journal.pgen.1008689. eCollection 2020 Oct.
6
Gene Family Structure and Function.
Annu Rev Genet. 2020 Nov 23;54:25-46. doi: 10.1146/annurev-genet-021920-092410. Epub 2020 Jul 14.
8
The Histone Chaperone FACT Induces Cas9 Multi-turnover Behavior and Modifies Genome Manipulation in Human Cells.
Mol Cell. 2020 Jul 16;79(2):221-233.e5. doi: 10.1016/j.molcel.2020.06.014. Epub 2020 Jun 29.
9
Rad9/53BP1 promotes DNA repair via crossover recombination by limiting the Sgs1 and Mph1 helicases.
Nat Commun. 2020 Jun 23;11(1):3181. doi: 10.1038/s41467-020-16997-w.
10
Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors.
Nat Biotechnol. 2020 Jul;38(7):824-844. doi: 10.1038/s41587-020-0561-9. Epub 2020 Jun 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验