Suppr超能文献

基于空间 GIS 的遗传算法用于城市固体废物收集路径优化。

SGA: spatial GIS-based genetic algorithm for route optimization of municipal solid waste collection.

机构信息

Research Unit LOGIQ, Sfax University, Sfax, Tunisia.

VNU Information Technology Institute, Vietnam National University, Hanoi, Vietnam.

出版信息

Environ Sci Pollut Res Int. 2018 Sep;25(27):27569-27582. doi: 10.1007/s11356-018-2826-0. Epub 2018 Jul 27.

Abstract

Designing optimization models and meta-heuristic algorithms for minimization of traveling routes of vehicles in solid waste collection has been gaining interest in environmental modeling. The computer models and methods are useful to bring out specific strategies for prevention and precaution of possible disasters that could be foreseen worldwide. This paper proposes a new Spatial Geographic Information System (GIS)-based Genetic Algorithm for optimizing the route of solid waste collection. The proposed algorithm, called SGA, uses a modified version of the original Dijkstra algorithm in GIS to generate optimal solutions for vehicles. Then, a pool of solutions, which are optimal routes of all vehicles, is encoded in Genetic Algorithm. It is iteratively evolved to a better one and finally to the optimal solution. Experiments on the case study at Sfax city in Tunisia are performed to validate the performance of the proposal. It has been shown that the proposed method has better performance than the practical route and the original Dijkstra method.

摘要

设计优化模型和启发式算法来最小化固体废物收集车辆的行驶路线,这在环境建模中越来越受到关注。计算机模型和方法有助于制定具体的策略,以预防和防范可能在全球范围内发生的灾害。本文提出了一种新的基于空间地理信息系统(GIS)的遗传算法,用于优化固体废物收集路线。所提出的算法称为 SGA,它使用 GIS 中修改后的原始 Dijkstra 算法来为车辆生成最佳解决方案。然后,将一组解决方案(即所有车辆的最佳路线)编码到遗传算法中。它通过迭代不断进化,直到达到更好的解决方案,最终达到最优解。在突尼斯斯法克斯市的案例研究中进行了实验,以验证该建议的性能。结果表明,与实际路线和原始 Dijkstra 方法相比,所提出的方法具有更好的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验