Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Institute for Advanced Study, Institute of Molecular Functional Materials , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong , China.
State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering , Zhejiang University , Hangzhou 310058 , China.
ACS Nano. 2018 Aug 28;12(8):7936-7945. doi: 10.1021/acsnano.8b02452. Epub 2018 Aug 1.
Currently, a serious problem obstructing the large-scale clinical applications of fluorescence technique is the shallow penetration depth. Two-photon fluorescence microscopic imaging with excitation in the longer-wavelength near-infrared (NIR) region (>1100 nm) and emission in the NIR-I region (650-950 nm) is a good choice to realize deep-tissue and high-resolution imaging. Here, we report ultradeep two-photon fluorescence bioimaging with 1300 nm NIR-II excitation and NIR-I emission (peak ∼810 nm) based on a NIR aggregation-induced emission luminogen (AIEgen). The crab-shaped AIEgen possesses a planar core structure and several twisting phenyl/naphthyl rotators, affording both high fluorescence quantum yield and efficient two-photon activity. The organic AIE dots show high stability, good biocompatibility, and a large two-photon absorption cross section of 1.22 × 10 GM. Under 1300 nm NIR-II excitation, in vivo two-photon fluorescence microscopic imaging helps to reconstruct the 3D vasculature with a high spatial resolution of sub-3.5 μm beyond the white matter (>840 μm) and even to the hippocampus (>960 μm) and visualize small vessels of ∼5 μm as deep as 1065 μm in mouse brain, which is among the largest penetration depths and best spatial resolution of in vivo two-photon imaging. Rational comparison with the AIE dots manifests that two-photon imaging outperforms the one-photon mode for high-resolution deep imaging. This work will inspire more sight and insight into the development of efficient NIR fluorophores for deep-tissue biomedical imaging.
目前,阻碍荧光技术大规模临床应用的一个严重问题是穿透深度较浅。在较长波长近红外(NIR)区(>1100nm)激发、在 NIR-I 区(650-950nm)发射的双光子荧光显微镜成像是实现深层组织和高分辨率成像的一个很好的选择。在这里,我们报道了基于近红外聚集诱导发射发光体(AIEgen)的 1300nm NIR-II 激发和 NIR-I 发射(峰值~810nm)的超深双光子荧光生物成像。蟹形 AIEgen 具有平面核心结构和几个扭曲的苯/萘旋转器,赋予其高荧光量子产率和高效的双光子活性。有机 AIE 点具有高稳定性、良好的生物相容性和 1.22×10GM 的大双光子吸收截面。在 1300nm NIR-II 激发下,体内双光子荧光显微镜成像有助于重建 3D 血管结构,空间分辨率高达亚 3.5μm,超过白质(>840μm),甚至到海马体(>960μm),并可视化深度达 1065μm 的约 5μm 小血管,这是体内双光子成像中穿透深度最大和空间分辨率最好的。与 AIE 点的合理比较表明,双光子成像在高分辨率深层成像方面优于单光子模式。这项工作将激发更多的关注和深入研究用于深层组织生物医学成像的高效近红外荧光团的开发。