Suppr超能文献

固态光子上转换材料:结构完整性与三重态-单重态双能量迁移

Solid-State Photon Upconversion Materials: Structural Integrity and Triplet-Singlet Dual Energy Migration.

作者信息

Joarder Biplab, Yanai Nobuhiro, Kimizuka Nobuo

机构信息

Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS) , Kyushu University , 744 Moto-oka, Nishi-ku , Fukuoka 819-0395 , Japan.

出版信息

J Phys Chem Lett. 2018 Aug 16;9(16):4613-4624. doi: 10.1021/acs.jpclett.8b02172. Epub 2018 Aug 2.

Abstract

Triplet-triplet annihilation-based photon upconversion (TTA-UC) is a process wherein longer-wavelength light (lower-energy photons) is converted into shorter-wavelength light (higher-energy photons) under low excitation intensity in multichromophore systems. There have been many reports on highly efficient TTA-UC in solution; however, significant challenges remain in the development of solid-state upconverters in order to explore real-world applications. In this Perspective, we discuss the advantages and challenges of different approaches for TTA-UC in solvent-free solid systems. We consider that the energy migration-based TTA-UC has the potential to achieve ideal materials with high UC efficiency at weak solar irradiance. While the UC performance of such systems is still limited at this moment, we introduce recently developed important concepts to improve it, including kinetic/thermodynamic donor dispersion in acceptor assemblies, defectless crystals, and triplet-singlet dual energy migration. Future integration of these concepts into a single material would realize the ideal TTA-UC system.

摘要

基于三线态-三线态湮灭的光子上转换(TTA-UC)是一个过程,即在多发色团体系中,在低激发强度下,较长波长的光(低能量光子)被转换为较短波长的光(高能量光子)。关于溶液中高效TTA-UC已有许多报道;然而,为了探索实际应用,固态上转换器的开发仍面临重大挑战。在这篇展望文章中,我们讨论了无溶剂固体体系中不同TTA-UC方法的优点和挑战。我们认为基于能量迁移的TTA-UC有潜力在弱太阳辐照下实现具有高上转换效率的理想材料。虽然目前此类体系的上转换性能仍然有限,但我们介绍了最近为改善它而开发的重要概念,包括受体组装体中的动力学/热力学供体分散、无缺陷晶体和三线态-单线态双能量迁移。将这些概念未来整合到单一材料中将实现理想的TTA-UC体系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验