Suppr超能文献

基于甲基丙烯酸酯的共聚物作为用于三重态-三重态湮灭上转换的可调谐主体材料。

Methacrylate-based copolymers as tunable hosts for triplet-triplet annihilation upconversion.

作者信息

Bennison Michael J, Collins Abigail R, Gomes Franca Larissa, Burgoyne Morris Georgina H, Willis-Fox Niamh, Daly Ronan, Karlsson Joshua K G, Charles Bethan L, Evans Rachel C

机构信息

Department of Materials Science and Metallurgy, University of Cambridge CB3 0FS UK

Institute for Manufacturing, Department of Engineering, University of Cambridge 17 Charles Babbage Rd Cambridge CB3 0FS UK.

出版信息

Mater Adv. 2025 Jan 10;6(3):1089-1096. doi: 10.1039/d4ma01221f. eCollection 2025 Feb 3.

Abstract

The ability to convert light to higher energies through triplet-triplet annihilation upconversion (TTA-UC) is attractive for a range of applications including solar energy harvesting, bioimaging and anti-counterfeiting. Practical applications require integration of the TTA-UC chromophores within a suitable host, which leads to a compromise between the high upconversion efficiencies achievable in liquids and the durability of solids. Herein, we present a series of methacrylate copolymers as TTA-UC hosts, in which the glass transition temperature ( ), and hence upconversion efficiency can be tuned by varying the co-monomer ratios (-hexyl methacrylate (HMA) and 2,2,2-trifluoroethyl methacrylate (TFEMA)). Using the model sensitiser/emitter pair of palladium(ii) octaethylporphyrin (PdOEP) and diphenylanthracene (DPA), the upconversion quantum yield was found to increase with decreasing glass transition temperature, reaching a maximum of 1.6 ± 0.2% in air at room temperature. Kinetic analysis of the upconversion and phosphorescence decays reveal that increased PdOEP aggregation in the glassy polymers leads to a competitive non-radiative relaxation pathway that quenches the triplet state. Notably, the threshold intensity is highly sensitive to the glass transition temperature, ranging from 1250 mW cm for PHMATFEMA ( = -9.4 °C) to ∼200 mW cm for more 'glassy' hosts, PHMATFEMA ( = 20.1 °C), suggesting the TTA-UC mechanism switches from diffusion-based collisions to triplet exciton migration at localised sensitiser-emitter pairs.

摘要

通过三重态-三重态湮灭上转换(TTA-UC)将光转换为更高能量的能力在一系列应用中具有吸引力,包括太阳能收集、生物成像和防伪。实际应用需要将TTA-UC发色团整合到合适的主体中,这导致在液体中可实现的高上转换效率与固体的耐久性之间存在折衷。在此,我们展示了一系列甲基丙烯酸酯共聚物作为TTA-UC主体,其中玻璃化转变温度()以及因此的上转换效率可以通过改变共聚单体比例(甲基丙烯酸己酯(HMA)和甲基丙烯酸2,2,2-三氟乙酯(TFEMA))来调节。使用八乙基卟啉钯(II)(PdOEP)和二苯基蒽(DPA)的模型敏化剂/发射体对,发现上转换量子产率随着玻璃化转变温度的降低而增加,在室温空气中最高达到1.6±0.2%。对上转换和磷光衰减的动力学分析表明,玻璃态聚合物中PdOEP聚集的增加导致了一条竞争性的非辐射弛豫途径,该途径淬灭了三重态。值得注意的是,阈值强度对玻璃化转变温度高度敏感,范围从PHMATFEMA(= -9.4°C)的1250 mW cm到更“玻璃态”主体PHMATFEMA(= 20.1°C)的约200 mW cm,这表明TTA-UC机制从基于扩散的碰撞转变为在局部敏化剂-发射体对处的三重态激子迁移。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e030/11718357/06035134fe7c/d4ma01221f-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验