Suppr超能文献

粘性细菌淀粉样纳米纤维介导金属有机框架在多种聚合物基底上的生长。

Adhesive bacterial amyloid nanofiber-mediated growth of metal-organic frameworks on diverse polymeric substrates.

作者信息

Zhang Cuizheng, Li Yingfeng, Wang Hongliang, He Sanfeng, Xu Yiyi, Zhong Chao, Li Tao

机构信息

School of Physical Science and Technology , ShanghaiTech University , Shanghai , China 201210 . Email:

Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai , China 200050.

出版信息

Chem Sci. 2018 Jun 1;9(25):5672-5678. doi: 10.1039/c8sc01591k. eCollection 2018 Jul 7.

Abstract

The development of a simple, robust, and generalizable approach for spatially controlled growth of metal-organic frameworks (MOFs) on diverse polymeric substrates is of profound technological significance but remains a major challenge. Here, we reported the use of adhesive bacterial amyloid nanofibers, also known as curli nanofibers (CNFs), major protein components of bacterial biofilms, as universal and chemically/mechanically robust coatings on various polymeric substrates to achieve controlled MOF growth with improved surface coverage up to 100-fold. Notably, owing to the intrinsic adhesive attributes of CNFs, our approach is applicable for MOF growth on both 2D surfaces and 3D objects regardless of their geometric complexity. Applying this technique to membrane fabrication afforded a thin-film composite membrane comprising a 760 ± 80 nm ZIF-8 selective layer grown on a microporous polyvinylidene fluoride (PVDF) support which exhibited a CH/CH mixed-gas separation factor up to 10, CH permeance up to 1110 GPU and operational stability up to 7 days. Our simple yet robust approach therefore provides new insights into designing new interfaces for mediating MOF growth and opens new opportunities for constructing new MOF-based membranes and devices.

摘要

开发一种简单、稳健且可推广的方法,用于在各种聚合物基底上进行空间控制的金属有机框架(MOF)生长,具有深远的技术意义,但仍然是一项重大挑战。在此,我们报道了使用粘性细菌淀粉样纳米纤维,也称为卷曲纳米纤维(CNF),它是细菌生物膜的主要蛋白质成分,作为各种聚合物基底上通用且化学/机械性能稳健的涂层,以实现可控的MOF生长,表面覆盖率提高了100倍。值得注意的是,由于CNF的固有粘性属性,我们的方法适用于在二维表面和三维物体上进行MOF生长,无论其几何复杂性如何。将该技术应用于膜制备,得到了一种薄膜复合膜,该膜由生长在微孔聚偏氟乙烯(PVDF)支撑体上的760±80nm的ZIF-8选择性层组成,其CH/CH混合气体分离因子高达10,CH渗透率高达1110 GPU,操作稳定性高达7天。因此,我们这种简单而稳健的方法为设计介导MOF生长的新界面提供了新的见解,并为构建新型基于MOF的膜和器件开辟了新的机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d89d/6050626/9063ad4ace16/c8sc01591k-s1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验