Suppr超能文献

由功能化低复杂度结构域组装的多样化超分子纳米纤维网络。

Diverse Supramolecular Nanofiber Networks Assembled by Functional Low-Complexity Domains.

机构信息

School of Physical Science and Technology, ShanghaiTech University , Shanghai 201210, China.

University of Chinese Academy of Sciences , Beijing 100049, China.

出版信息

ACS Nano. 2017 Jul 25;11(7):6985-6995. doi: 10.1021/acsnano.7b02298. Epub 2017 Jun 19.

Abstract

Self-assembling supramolecular nanofibers, common in the natural world, are of fundamental interest and technical importance to both nanotechnology and materials science. Despite important advances, synthetic nanofibers still lack the structural and functional diversity of biological molecules, and the controlled assembly of one type of molecule into a variety of fibrous structures with wide-ranging functional attributes remains challenging. Here, we harness the low-complexity (LC) sequence domain of fused in sarcoma (FUS) protein, an essential cellular nuclear protein with slow kinetics of amyloid fiber assembly, to construct random copolymer-like, multiblock, and self-sorted supramolecular fibrous networks with distinct structural features and fluorescent functionalities. We demonstrate the utilities of these networks in the templated, spatially controlled assembly of ligand-decorated gold nanoparticles, quantum dots, nanorods, DNA origami, and hybrid structures. Owing to the distinguishable nanoarchitectures of these nanofibers, this assembly is structure-dependent. By coupling a modular genetic strategy with kinetically controlled complex supramolecular self-assembly, we demonstrate that a single type of protein molecule can be used to engineer diverse one-dimensional supramolecular nanostructures with distinct functionalities.

摘要

自组装超分子纳米纤维在自然界中很常见,它们对纳米技术和材料科学都具有基础理论意义和重要的技术价值。尽管已经取得了重要的进展,但合成纳米纤维仍然缺乏生物分子的结构和功能多样性,并且将一种分子可控地组装成具有广泛功能属性的多种纤维结构仍然具有挑战性。在这里,我们利用融合肉瘤(FUS)蛋白的低复杂度(LC)序列结构域,该蛋白是一种重要的核内细胞蛋白,其淀粉样纤维组装的动力学较慢,构建了具有独特结构特征和荧光功能的随机共聚物样、多嵌段和自分类超分子纤维网络。我们展示了这些网络在配体修饰的金纳米粒子、量子点、纳米棒、DNA 折纸和混合结构的模板化、空间可控组装中的应用。由于这些纳米纤维具有可区分的纳米结构,因此这种组装是结构依赖性的。通过将模块化遗传策略与动力学控制的复杂超分子自组装相结合,我们证明了可以使用单一类型的蛋白质分子来设计具有不同功能的多种一维超分子纳米结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验