Programa de Doctorado en Ciencias Agropecuarias, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile; Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile.
Núcleo de Investigación en Bioproductos y Materiales Avanzados, Facultad de Ingeniería, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile.
Plant Physiol Biochem. 2018 Sep;130:408-417. doi: 10.1016/j.plaphy.2018.07.024. Epub 2018 Jul 19.
The applications of nanoparticles continue to expand into areas as diverse as medicine, bioremediation, cosmetics, pharmacology and various industries, including agri-food production. The widespread use of nanoparticles has generated concerns given the impact these nanoparticles - mostly metal-based such as CuO, Ag, Au, CeO, TiO, ZnO, Co, and Pt - could be having on plants. Some of the most studied variables are plant growth, development, production of biomass, and ultimately oxidative stress and photosynthesis. A systematic appraisal of information about the impact of nanoparticles on these processes is needed to enhance our understanding of the effects of metallic nanoparticles and oxides on the structure and function on the plant photosynthetic apparatus. Most nanoparticles studied, especially CuO and Ag, had a detrimental impact on the structure and function of the photosynthetic apparatus. Nanoparticles led to a decrease in concentration of photosynthetic pigments, especially chlorophyll, and disruption of grana and other malformations in chloroplasts. Regarding the functions of the photosynthetic apparatus, nanoparticles were associated with a decrease in the photosynthetic efficiency of photosystem II and decreased net photosynthesis. However, CeO and TiO nanoparticles may have a positive effect on photosynthetic efficiency, mainly due to an increase in electron flow between the photosystems II and I in the Hill reaction, as well as an increase in Rubisco activity in the Calvin and Benson cycle. Nevertheless, the underlying mechanisms are poorly understood. The future mechanistic work needs to be aimed at characterizing the enhancing effect of nanoparticles on the active generation of ATP and NADPH, carbon fixation and its incorporation into primary molecules such as photo-assimilates.
纳米粒子的应用不断扩展到医学、生物修复、化妆品、药理学和包括农业食品生产在内的各个行业。由于这些纳米粒子(主要是基于金属的,如 CuO、Ag、Au、CeO、TiO、ZnO、Co 和 Pt)对植物可能产生的影响,纳米粒子的广泛应用引起了人们的关注。一些研究最多的变量是植物的生长、发育、生物量的产生,以及最终的氧化应激和光合作用。需要对有关纳米粒子对这些过程影响的信息进行系统评估,以增强我们对金属纳米粒子和氧化物对植物光合作用装置的结构和功能的影响的理解。大多数研究的纳米粒子,特别是 CuO 和 Ag,对光合作用装置的结构和功能都有不利影响。纳米粒子导致光合色素,特别是叶绿素的浓度降低,并破坏叶绿体中的类囊体和其他畸形。关于光合作用装置的功能,纳米粒子与光合作用系统 II 的光合效率降低和净光合作用减少有关。然而,CeO 和 TiO 纳米粒子可能对光合作用效率有积极影响,这主要是由于 Hill 反应中光合系统 II 和 I 之间的电子流增加,以及 Calvin 和 Benson 循环中 Rubisco 活性增加。然而,其潜在机制尚不清楚。未来的机制工作需要旨在表征纳米粒子对 ATP 和 NADPH 活性生成、碳固定及其掺入光产物等初级分子的增强作用。