Suppr超能文献

基于循环分段卷积神经网络的化学诱导疾病提取。

Chemical-induced disease extraction via recurrent piecewise convolutional neural networks.

机构信息

Key Laboratory of Network Oriented Intelligent Computation, Harbin Institute of Technology, Shenzhen, Guangdong, China.

Shenzhen Calligraphy Digital Simulation Technology Engineering Laboratory, Harbin Institute of Technology, Shenzhen, Guangdong, China.

出版信息

BMC Med Inform Decis Mak. 2018 Jul 23;18(Suppl 2):60. doi: 10.1186/s12911-018-0629-3.

Abstract

BACKGROUND

Extracting relationships between chemicals and diseases from unstructured literature have attracted plenty of attention since the relationships are very useful for a large number of biomedical applications such as drug repositioning and pharmacovigilance. A number of machine learning methods have been proposed for chemical-induced disease (CID) extraction due to some publicly available annotated corpora. Most of them suffer from time-consuming feature engineering except deep learning methods. In this paper, we propose a novel document-level deep learning method, called recurrent piecewise convolutional neural networks (RPCNN), for CID extraction.

RESULTS

Experimental results on a benchmark dataset, the CDR (Chemical-induced Disease Relation) dataset of the BioCreative V challenge for CID extraction show that the highest precision, recall and F-score of our RPCNN-based CID extraction system are 65.24, 77.21 and 70.77%, which is competitive with other state-of-the-art systems.

CONCLUSIONS

A novel deep learning method is proposed for document-level CID extraction, where domain knowledge, piecewise strategy, attention mechanism, and multi-instance learning are combined together. The effectiveness of the method is proved by experiments conducted on a benchmark dataset.

摘要

背景

从非结构化文献中提取化学物质与疾病之间的关系引起了广泛关注,因为这些关系对于许多生物医学应用非常有用,如药物重定位和药物警戒。由于一些公开的标注语料库,已经提出了许多用于化学诱导疾病(CID)提取的机器学习方法。除了深度学习方法之外,大多数方法都存在耗时的特征工程问题。在本文中,我们提出了一种新的文档级深度学习方法,称为递归分段卷积神经网络(RPCNN),用于 CID 提取。

结果

在基准数据集,即生物创意 V 挑战赛的 CDR(Chemical-induced Disease Relation)数据集上进行的 CID 提取实验结果表明,我们基于 RPCNN 的 CID 提取系统的最高精度、召回率和 F 值分别为 65.24%、77.21%和 70.77%,与其他最先进的系统具有竞争力。

结论

本文提出了一种新的文档级 CID 提取深度学习方法,该方法结合了领域知识、分段策略、注意力机制和多实例学习。通过在基准数据集上进行的实验证明了该方法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8bd/6069297/ab2f5518bca9/12911_2018_629_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验