Xu Zhaopeng, Sun Chuanbowen, Ji Tonghui, Manton Jonathan H, Shieh William
Opt Lett. 2020 Aug 1;45(15):4216-4219. doi: 10.1364/OL.394048.
We propose a novel, to the best of our knowledge, cascade recurrent neural network (RNN)-based nonlinear equalizer for a pulse amplitude modulation (PAM)4 short-reach direct detection system. A 100 Gb/s PAM4 link is experimentally demonstrated over 15 km standard single-mode fiber (SSMF), using a 16 GHz directly modulated laser (DML) in C-band. The link suffers from strong nonlinear impairments which is mainly induced by the mixture of linear channel effects with square-law detection, the DML frequency chirp, and the device nonlinearity. Experimental results show that the proposed cascade RNN-based equalizer outperforms other feedforward or non-cascade neural network (NN)-based equalizers owing to both its cascade and recurrent structure, showing the great potential to effectively tackle the nonlinear signal distortion. With the aid of a cascade RNN-based equalizer, a bit-error rate (BER) lower than the 7% hard-decision forward error correction (FEC) threshold can be achieved when the receiver power is larger than 5 dBm. Compared with traditional non-cascade NN-based equalizers, the training time could also be reduced by half with the help of the cascade structure.
据我们所知,我们提出了一种新颖的基于级联递归神经网络(RNN)的非线性均衡器,用于脉冲幅度调制(PAM)4短距离直接检测系统。通过在C波段使用16 GHz直接调制激光器(DML),在15 km标准单模光纤(SSMF)上通过实验演示了100 Gb/s PAM4链路。该链路受到强烈的非线性损伤,这主要是由线性信道效应与平方律检测的混合、DML频率啁啾以及器件非线性引起的。实验结果表明,所提出的基于级联RNN的均衡器由于其级联和递归结构,优于其他基于前馈或非级联神经网络(NN)的均衡器,显示出有效解决非线性信号失真的巨大潜力。借助基于级联RNN的均衡器,当接收功率大于5 dBm时,可以实现低于7%硬判决前向纠错(FEC)阈值的误码率(BER)。与传统的基于非级联NN的均衡器相比,借助级联结构,训练时间也可以减少一半。