Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing, People's Republic of China.
Department of Polymer Science and Engineering, Jiaxing University, Jiaxing 314001, People's Republic of China.
J Chem Phys. 2018 Jul 28;149(4):044105. doi: 10.1063/1.5031114.
Establishing the Time-Temperature and Frequency-Temperature Superposition Principles (TTSP and FTSP) to describe the mechanical behavior of polymeric materials is always of paramount significance. In this work, by adopting the classic coarse-grained model, we investigate the validity of these superposition principles for a series of networks, such as the pure polymer network, interpenetrating polymer networks composed of stiff and flexible networks (IPNs-SF), interpenetrating polymer networks composed of different cross-linking networks (IPNs-DC), polymer nanocomposites (PNCs), and surface grafted modified PNCs. The study focuses on the three critical mechanical properties such as the stress relaxation, the storage modulus versus the frequency obtained from the dynamic periodic shear deformation, and the uniaxial tensile stress-strain. The glass transition temperature (T) is about 0.47 for the simulated polymer network (CL400), and a smooth master curve is obtained for the stress relaxation process by setting the reference temperature T = 0.6 via the horizontal shifting process, indicating the validity of TTSP. Furthermore, similar smooth master curves are also achieved for both dynamic periodic shear and uniaxial tensile deformation, which exhibit similar trends and share the identical linear viscoelastic regime in the temperature interval above T: 0.55<T<1.0. Importantly, the Williams-Landel-Ferry and Vogel-Fulcher-Tammann equations are both adopted to quantitatively analyze non-linear TTSP behavior when the temperature approaches T. For the three mechanical properties, we emphasize that the master curve from TTSP or FTSP is independent of the reference temperature if it is higher than T, and based on the linear relation of the shift factor versus the inverse of the temperature higher than T, we propose a universal framework for the description of the TTSP or FTSP on the various mechanical properties. Then, we verify that the TTSP seems to be valid for the IPNs-DC system, while it does not hold for both PNCs and IPNs-SF systems because of their structural and dynamic heterogeneity. Furthermore, for PNCs filled with NPs grafted with polymer chains, the TTSP recovers back to be valid because of the enhanced compatibility between polymer and NPs attributed to the grafted polymer chains.
建立时间-温度和频率-温度叠加原理(TTSP 和 FTSP)来描述聚合物材料的力学行为一直是至关重要的。在这项工作中,我们采用经典的粗粒化模型,研究了这些叠加原理对一系列网络的有效性,如纯聚合物网络、由刚性和柔性网络组成的互穿聚合物网络(IPNs-SF)、由不同交联网络组成的互穿聚合物网络(IPNs-DC)、聚合物纳米复合材料(PNCs)和表面接枝改性 PNCs。研究重点是三个关键力学性能,如由动态周期性剪切变形获得的应力松弛、存储模量与频率的关系以及单轴拉伸应力-应变。模拟聚合物网络(CL400)的玻璃化转变温度(T)约为 0.47,通过水平移动过程将参考温度 T=0.6 设置为 T,得到应力松弛过程的平滑主曲线,表明 TTSP 的有效性。此外,对于动态周期性剪切和单轴拉伸变形,也得到了类似的平滑主曲线,它们在 T 以上的温度区间表现出相似的趋势,并具有相同的线性粘弹性区:0.55<T<1.0。重要的是,当温度接近 T 时,采用 Williams-Landel-Ferry 和 Vogel-Fulcher-Tammann 方程对非线性 TTSP 行为进行定量分析。对于这三种力学性能,我们强调如果参考温度高于 T,那么 TTSP 或 FTSP 的主曲线独立于参考温度,并且基于高于 T 的温度下的移动因子与温度倒数的线性关系,我们提出了一个用于描述各种力学性能的 TTSP 或 FTSP 的通用框架。然后,我们验证 TTSP 似乎对 IPNs-DC 体系有效,而对于 PNCs 和 IPNs-SF 体系则无效,因为它们的结构和动态异质性。此外,对于填充有接枝聚合物链的 NPs 的 PNCs,TTSP 恢复有效,因为接枝聚合物链增强了聚合物和 NPs 之间的相容性。