Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006-Oviedo, Spain.
Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006-Oviedo, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain.
Int Rev Cell Mol Biol. 2018;340:35-77. doi: 10.1016/bs.ircmb.2018.05.002. Epub 2018 Jun 21.
Mitohormesis is a term used to define a biological response where the induction of a reduced amount of mitochondrial stress leads to an increment in health and viability within a cell, tissue, or organism. The mitochondrial stress response activated by a potentially damaging stimulus requires a coordinated dialogue with the cellular nucleus, known as mitonuclear communication. This interplay induced by the hormetic response in mitochondria relies in a variety of signals among which the most relevant ones are reactive oxygen species (ROS), mitochondrial metabolites, proteotoxic signals, the mitochondria-cytosol stress response, and the release of mitokines. The activation of the mitohormetic response increases lifespan in different animal models, from worms to mammals. Further, mitohormesis also enhances healthspan, particularly improving metabolism and immune system. Although multiple mediators and stress signals have been proposed to activate this protective mechanism, beneficial outcomes of mitohormesis are most probably due to an increase in mitochondrial ROS. Activation of other protective stress mechanisms as mitochondrial unfolded protein response or the increase in the expression of mitokines are also associated with the positive benefits exerted by mitohormesis. Herein, we review the different mitohormetic signals and pathways described from worms to mammals and their effects on health and survival. The identification and description of pathways and molecules implicated in the beneficial effects of mitohormesis will help understand the complex balance between death and survival in the face of mitochondrial damage and will allow to open a novel area of therapies aimed at improving health in humans.
线粒体自噬是一个用来定义生物学反应的术语,即在细胞、组织或生物体中,诱导少量的线粒体应激会导致健康和活力的增加。潜在的破坏性刺激激活的线粒体应激反应需要与细胞核进行协调对话,这种对话被称为线粒体-核通讯。这种由线粒体中的应激反应诱导的相互作用依赖于各种信号,其中最重要的是活性氧(ROS)、线粒体代谢物、蛋白毒性信号、线粒体-细胞质应激反应和线粒体细胞因子的释放。线粒体自噬反应的激活可以延长不同动物模型(从蠕虫到哺乳动物)的寿命。此外,线粒体自噬还可以延长健康寿命,特别是改善代谢和免疫系统。虽然已经提出了多种介质和应激信号来激活这种保护机制,但线粒体 ROS 的增加可能是产生有益效果的主要原因。其他保护应激机制的激活,如线粒体未折叠蛋白反应或线粒体细胞因子表达的增加,也与线粒体自噬产生的积极益处有关。本文综述了从蠕虫到哺乳动物的不同线粒体自噬信号和途径及其对健康和生存的影响。鉴定和描述参与线粒体自噬有益作用的途径和分子,将有助于理解在面对线粒体损伤时死亡和生存之间的复杂平衡,并为改善人类健康开辟新的治疗领域。