Suppr超能文献

从衰老裂殖酵母细胞的杂交池揭示天然长寿等位基因。

Uncovering Natural Longevity Alleles from Intercrossed Pools of Aging Fission Yeast Cells.

机构信息

Department of Genetics, Evolution and Environment and Institute of Healthy Ageing, University College London, WC1E 6BT, U.K.

Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK.

出版信息

Genetics. 2018 Oct;210(2):733-744. doi: 10.1534/genetics.118.301262. Epub 2018 Aug 2.

Abstract

Quantitative traits often show large variation caused by multiple genetic factors . One such trait is the chronological lifespan of non-dividing yeast cells, serving as a model for cellular aging. Screens for genetic factors involved in aging typically assay mutants of protein-coding genes. To identify natural genetic variants contributing to cellular aging, we exploited two strains of the fission yeast, , that differ in chronological lifespan. We generated segregant pools from these strains and subjected them to advanced intercrossing over multiple generations to break up linkage groups. We chronologically aged the intercrossed segregant pool, followed by genome sequencing at different times to detect genetic variants that became reproducibly enriched as a function of age. A region on Chromosome II showed strong positive selection during aging. Based on expected functions, two candidate variants from this region in the long-lived strain were most promising to be causal: small insertions and deletions in the 5'-untranslated regions of and Ppk31 is an ortholog of Rim15, a conserved kinase controlling cell proliferation in response to nutrients, while SPBC409.08 is a predicted spermine transmembrane transporter. Both Rim15 and the spermine-precursor, spermidine, are implicated in aging as they are involved in autophagy-dependent lifespan extension. Single and double allele replacement suggests that both variants, alone or combined, have subtle effects on cellular longevity. Furthermore, deletion mutants of both and rescued growth defects caused by spermidine. We propose that Ppk31 and SPBC409.08 may function together to modulate lifespan, thus linking Rim15/Ppk31 with spermidine metabolism.

摘要

数量性状通常由多个遗传因素引起较大的变异。其中一个性状是不分裂酵母细胞的 chronological lifespan,作为细胞衰老的模型。参与衰老的遗传因素的筛选通常检测蛋白质编码基因突变体。为了鉴定导致细胞衰老的自然遗传变异,我们利用了两种裂殖酵母菌株,和,它们在 chronological lifespan 上有所不同。我们从这些菌株中生成了 segregant 池,并对它们进行了多代的高级杂交,以打破连锁群。我们对杂交 segregant 池进行了 chronological aging,然后在不同时间进行基因组测序,以检测随着年龄增长而重现富集的遗传变异。染色体 II 上的一个区域在衰老过程中表现出强烈的正选择。基于预期的功能,从这个长寿菌株的这个区域中选出两个候选变异体最有希望成为因果关系:和的 5'-非翻译区的小插入和缺失。Ppk31 是 Rim15 的同源物,Rim15 是一种保守的激酶,可控制细胞对营养物质的增殖反应,而 SPBC409.08 是一种预测的精胺跨膜转运体。Rim15 和 spermidine 的前体 spermidine 都与衰老有关,因为它们参与了自噬依赖性寿命延长。单等位基因和双等位基因替换表明,这两个变异体单独或组合在一起,对细胞寿命有细微的影响。此外,和的缺失突变体都可以挽救由 spermidine 引起的生长缺陷。我们提出 Ppk31 和 SPBC409.08 可能一起调节寿命,从而将 Rim15/Ppk31 与 spermidine 代谢联系起来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/346f/6216586/679685ea9136/733fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验