Suppr超能文献

细胞静止状态下的转录重编程。

Transcriptional reprogramming in cellular quiescence.

作者信息

Roche Benjamin, Arcangioli Benoit, Martienssen Robert

机构信息

a Cold Spring Harbor Laboratory , Cold Spring Harbor , NY , USA.

b Genome Dynamics Unit , UMR 3525 CNRS, Institut Pasteur, 25-28 rue du Docteur Roux , Paris , France.

出版信息

RNA Biol. 2017 Jul 3;14(7):843-853. doi: 10.1080/15476286.2017.1327510. Epub 2017 May 12.

Abstract

Most cells in nature are not actively dividing, yet are able to return to the cell cycle given the appropriate environmental signals. There is now ample evidence that quiescent G0 cells are not shut-down but still metabolically and transcriptionally active. Quiescent cells must maintain a basal transcriptional capacity to maintain transcripts and proteins necessary for survival. This implies a tight control over RNA polymerases: RNA pol II for mRNA transcription during G0, but especially RNA pol I and RNA pol III to maintain an appropriate level of structural RNAs, raising the possibility that specific transcriptional control mechanisms evolved in quiescent cells. In accordance with this, we recently discovered that RNA interference is necessary to control RNA polymerase I transcription during G0. While this mini-review focuses on yeast model organisms (Saccharomyces cerevisiae and Schizosaccharomyces pombe), parallels are drawn to other eukaryotes and mammalian systems, in particular stem cells.

摘要

自然界中的大多数细胞并非处于活跃分裂状态,但在受到适当的环境信号刺激时能够重新进入细胞周期。现在有充分的证据表明,静止的G0期细胞并非处于关闭状态,而是仍然具有代谢和转录活性。静止细胞必须维持基本的转录能力,以维持生存所需的转录本和蛋白质。这意味着对RNA聚合酶进行严格控制:在G0期,RNA聚合酶II用于mRNA转录,但特别是RNA聚合酶I和RNA聚合酶III用于维持适当水平的结构RNA,这增加了静止细胞中可能进化出特定转录控制机制的可能性。与此一致的是,我们最近发现RNA干扰对于在G0期控制RNA聚合酶I转录是必要的。虽然这篇小型综述主要关注酵母模式生物(酿酒酵母和裂殖酵母),但也会与其他真核生物和哺乳动物系统,特别是干细胞进行对比。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc42/5546717/b7d8af9fd8f8/krnb-14-07-1327510-g001.jpg

相似文献

1
Transcriptional reprogramming in cellular quiescence.
RNA Biol. 2017 Jul 3;14(7):843-853. doi: 10.1080/15476286.2017.1327510. Epub 2017 May 12.
2
RNA interference is essential for cellular quiescence.
Science. 2016 Nov 11;354(6313). doi: 10.1126/science.aah5651. Epub 2016 Oct 13.
3
Asymmetric cell division requires specific mechanisms for adjusting global transcription.
Nucleic Acids Res. 2017 Dec 1;45(21):12401-12412. doi: 10.1093/nar/gkx974.
4
RNA-interference-directed chromatin modification coupled to RNA polymerase II transcription.
Nature. 2005 Jun 30;435(7046):1275-9. doi: 10.1038/nature03652. Epub 2005 Jun 19.
7
RNA Pol IV and V in gene silencing: Rebel polymerases evolving away from Pol II's rules.
Curr Opin Plant Biol. 2015 Oct;27:154-64. doi: 10.1016/j.pbi.2015.07.005. Epub 2015 Sep 5.
8
Widespread use of TATA elements in the core promoters for RNA polymerases III, II, and I in fission yeast.
Mol Cell Biol. 2001 Oct;21(20):6870-81. doi: 10.1128/MCB.21.20.6870-6881.2001.
9
Dormancy and quiescence of skeletal muscle stem cells.
Results Probl Cell Differ. 2015;56:215-35. doi: 10.1007/978-3-662-44608-9_10.
10
Distinct transcriptional responses of RNA polymerases I, II and III to aptamers that bind TBP.
Nucleic Acids Res. 2005 Feb 8;33(3):838-45. doi: 10.1093/nar/gki212. Print 2005.

引用本文的文献

1
Reversible proliferative arrest induced by rapid depletion of RNase MRP.
Nat Commun. 2025 Jun 18;16(1):5342. doi: 10.1038/s41467-025-60471-4.
2
Natural Resistance to HIV Infection: Role of Immune Activation.
Immun Inflamm Dis. 2025 Feb;13(2):e70138. doi: 10.1002/iid3.70138.
4
Ageing-associated long non-coding RNA extends lifespan and reduces translation in non-dividing cells.
EMBO Rep. 2024 Nov;25(11):4921-4949. doi: 10.1038/s44319-024-00265-9. Epub 2024 Oct 2.
5
Finding new roles of classic biomolecular condensates in the nucleus: Lessons from fission yeast.
Cell Insight. 2024 Aug 5;3(5):100194. doi: 10.1016/j.cellin.2024.100194. eCollection 2024 Oct.
8
Mecp2 fine-tunes quiescence exit by targeting nuclear receptors.
Elife. 2024 May 15;12:RP89912. doi: 10.7554/eLife.89912.
9
Serum starvation-based method of ovarian cancer cell dormancy induction and termination .
Biol Methods Protoc. 2023 Nov 2;8(1):bpad029. doi: 10.1093/biomethods/bpad029. eCollection 2023.
10
Dormancy, stemness, and therapy resistance: interconnected players in cancer evolution.
Cancer Metastasis Rev. 2023 Mar;42(1):197-215. doi: 10.1007/s10555-023-10092-4. Epub 2023 Feb 9.

本文引用的文献

3
Pten is necessary for the quiescence and maintenance of adult muscle stem cells.
Nat Commun. 2017 Jan 17;8:14328. doi: 10.1038/ncomms14328.
4
DNA repair and mutations during quiescence in yeast.
FEMS Yeast Res. 2017 Jan 1;17(1). doi: 10.1093/femsyr/fox002.
5
SETD4 Regulates Cell Quiescence and Catalyzes the Trimethylation of H4K20 during Diapause Formation in Artemia.
Mol Cell Biol. 2017 Mar 17;37(7). doi: 10.1128/MCB.00453-16. Print 2017 Apr 1.
6
Profiling of Histone Post-Translational Modifications in Mouse Brain with High-Resolution Top-Down Mass Spectrometry.
J Proteome Res. 2017 Feb 3;16(2):599-608. doi: 10.1021/acs.jproteome.6b00694. Epub 2016 Dec 21.
7
Survival in Quiescence Requires the Euchromatic Deployment of Clr4/SUV39H by Argonaute-Associated Small RNAs.
Mol Cell. 2016 Dec 15;64(6):1088-1101. doi: 10.1016/j.molcel.2016.11.020.
8
Significance of Viable but Nonculturable : Induction, Detection, and Control.
J Microbiol Biotechnol. 2017 Mar 28;27(3):417-428. doi: 10.4014/jmb.1609.09063.
9
RNA interference is essential for cellular quiescence.
Science. 2016 Nov 11;354(6313). doi: 10.1126/science.aah5651. Epub 2016 Oct 13.
10
Ecdysone signaling induces two phases of cell cycle exit in Drosophila cells.
Biol Open. 2016 Nov 15;5(11):1648-1661. doi: 10.1242/bio.017525.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验