Suppr超能文献

通过深度学习实现联网建筑中的光伏功率无传感器预测。

Sensorless PV Power Forecasting in Grid-Connected Buildings through Deep Learning.

机构信息

B2B Solution R&D Center, CTO, LG Electronics, 51, Gasan digital 1-ro, Geumcheon-gu, Seoul 08592, Korea.

Department of Computer Science and Engineering, Korea University, Anam-Dong, Sungbuk-gu, Seoul 02841, Korea.

出版信息

Sensors (Basel). 2018 Aug 2;18(8):2529. doi: 10.3390/s18082529.

Abstract

Existing works in photovoltaic (PV) power generation focus on accurately predicting the PV power output on a forecast horizon. As the solar power generation is heavily influenced by meteorological conditions such as solar radiation, the weather forecast is a critical input in the prediction performance. However, the weather forecast is traditionally considered to have coarse granularity, so many are compelled to use on-site meteorological sensors to complement it. However, the approach involving on-site sensors has several issues. First, it incurs the cost in the installation, operation, and management of the sensors. Second, the physical model of the sensor dynamics itself can be a source of forecast errors. Third, it requires an accumulation of sensory data that represent all seasonal variations, which takes time to collect. In this paper, we take an alternative approach to use a relatively large deep neural network (DNN) instead of the on-site sensors to cope with the coarse-grained weather forecast. With historical PV output power data from our grid-connected building with a rooftop PV power generation facility and the publicly available weather forecast history data, we demonstrate that we can train a six-layer feedforward DNN for the day-ahead forecast. It achieves the average mean absolute error (MAE) of 2.9%, comparable to that of the conventional model, but without involing the on-site sensors.

摘要

现有的光伏 (PV) 发电研究工作侧重于准确预测预测时段内的 PV 功率输出。由于太阳能发电受太阳辐射等气象条件的影响较大,天气预报是预测性能的关键输入。然而,天气预报传统上被认为具有粗粒度,因此许多人被迫使用现场气象传感器来进行补充。然而,使用现场传感器的方法存在几个问题。首先,它会产生传感器的安装、运行和管理成本。其次,传感器动力学的物理模型本身可能是预测误差的一个来源。第三,它需要积累代表所有季节性变化的传感器数据,这需要时间来收集。在本文中,我们采用了一种替代方法,使用相对较大的深度神经网络 (DNN) 代替现场传感器来应对粗粒度的天气预报。我们利用来自带有屋顶光伏发电设施的联网建筑物的历史光伏输出功率数据和公开可用的天气预报历史数据,证明我们可以训练一个用于日前预测的六层前馈 DNN。它的平均平均绝对误差 (MAE) 为 2.9%,可与传统模型相媲美,但无需现场传感器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7636/6111307/f827a034a5e3/sensors-18-02529-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验