Suppr超能文献

使用单模型和混合模型在不同时间范围内对太阳能光伏产量进行机器学习预测。

Machine learning forecasting of solar PV production using single and hybrid models over different time horizons.

作者信息

Asiedu Shadrack T, Nyarko Frank K A, Boahen Samuel, Effah Francis B, Asaaga Benjamin A

机构信息

Department of Mechanical Engineering, Kwame Nkrumah University of Science and Technology Kumasi, PMB, Kumasi, Ghana.

Department of Electrical Engineering, Kwame Nkrumah University of Science and Technology Kumasi, PMB, Kumasi, Ghana.

出版信息

Heliyon. 2024 Mar 29;10(7):e28898. doi: 10.1016/j.heliyon.2024.e28898. eCollection 2024 Apr 15.

Abstract

This study uses operational data from a 180 kWp grid-connected solar PV system to train and compare the performance of single and hybrid machine learning models in predicting solar PV production a day-ahead, a week-ahead, two weeks ahead and one month-ahead. The study also analyses the trend in solar PV production and the effect of temperature on solar PV production. The performance of the models is evaluated using R score, mean absolute error and root mean square error. The findings revealed the best-performing model for the day ahead forecast to be Artificial Neural Network. Random Forest gave the best performance for the two-week and a month-ahead forecast, while a hybrid model composed of XGBoost and Random Forest gave the best performance for the week-ahead prediction. The study also observed a downward trend in solar PV production, with an average monthly decline of 244.37 kWh. Further, it was observed that an increase in the module temperature and ambient temperature beyond 47 and 25 resulted in a decline in solar PV production. The study shows that machine learning models perform differently under different time horizons. Therefore, selecting suitable machine learning models for solar PV forecasts for varying time horizons is extremely necessary.

摘要

本研究使用来自一个180千瓦峰值并网太阳能光伏系统的运行数据,来训练和比较单机器学习模型与混合机器学习模型在提前一天、提前一周、提前两周和提前一个月预测太阳能光伏发电量方面的性能。该研究还分析了太阳能光伏发电量的趋势以及温度对太阳能光伏发电量的影响。使用R分数、平均绝对误差和均方根误差来评估模型的性能。研究结果显示,提前一天预测的最佳性能模型是人工神经网络。随机森林在提前两周和提前一个月预测中表现最佳,而由XGBoost和随机森林组成的混合模型在提前一周预测中表现最佳。该研究还观察到太阳能光伏发电量呈下降趋势,平均每月下降244.37千瓦时。此外,观察到组件温度和环境温度分别超过47摄氏度和25摄氏度时,太阳能光伏发电量会下降。该研究表明,机器学习模型在不同的时间范围内表现不同。因此,为不同时间范围的太阳能光伏预测选择合适的机器学习模型是极其必要的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b116/11002275/bc3c50b8f59b/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验