Jaganathan Saravana Kumar, Mani Mohan Prasath
1Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
2Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
3 Biotech. 2018 Aug;8(8):327. doi: 10.1007/s13205-018-1356-2. Epub 2018 Jul 18.
In this study, a wound dressing based on polyurethane (PU) blended with copper sulphate nanofibers was developed using an electrospinning technique. The prepared PU and PU nanocomposites showed smooth fibers without any bead defects. The prepared nanocomposites showed smaller fiber (663 ± 156.30 nm) and pore (888 ± 70.93 nm) diameter compared to the pristine PU (fiber diameter 1159 ± 147.48 nm and pore diameter 1087 ± 62.51 nm). The interaction of PU with copper sulphate was evident in the infrared spectrum through hydrogen-bond formation. Thermal analysis displayed enhanced weight residue at higher temperature suggesting interaction of PU with copper sulphate. The contact angle measurements revealed the hydrophilic nature of the prepared nanocomposites (71° ± 2.309°) compared with pure PU (100° ± 0.5774°). The addition of copper sulphate into the PU matrix increased the surface roughness, as revealed in the atomic force microscopy (AFM) analysis. Mechanical testing demonstrated the enhanced tensile strength behavior of the fabricated nanocomposites (18.58 MPa) compared with the pristine PU (7.12 MPa). The coagulation assays indicated the enhanced blood compatibility of the developed nanocomposites [activated partial thromboplastin time (APTT)-179 ± 3.606 s and partial thromboplastin time (PT)-105 ± 2.646 s] by showing a prolonged blood clotting time compared with the pristine PU (APTT-147.7 ± 3.512 s and PT-84.67 ± 2.517 s). Furthermore, the hemolysis and cytotoxicity studies suggested a less toxicity nature of prepared nanocomposites by displaying low hemolytic index and enhanced cell viability rates compared with the PU membrane. It was observed that the fabricated novel wound dressing possesses better physicochemical and enhanced blood compatibility properties, and may be utilized for wound-healing applications.
在本研究中,采用静电纺丝技术制备了一种基于聚氨酯(PU)与硫酸铜纳米纤维共混的伤口敷料。制备的PU及PU纳米复合材料呈现出光滑的纤维,无任何珠状缺陷。与原始PU(纤维直径1159±147.48 nm,孔径1087±62.51 nm)相比,制备的纳米复合材料纤维直径(663±156.30 nm)和孔径(888±70.93 nm)更小。在红外光谱中,通过氢键形成可明显看出PU与硫酸铜之间的相互作用。热分析表明,在较高温度下重量残留增加,表明PU与硫酸铜发生了相互作用。接触角测量结果显示,与纯PU(100°±0.5774°)相比,制备的纳米复合材料具有亲水性(71°±2.309°)。原子力显微镜(AFM)分析表明,向PU基体中添加硫酸铜会增加表面粗糙度。力学测试表明,与原始PU(7.12 MPa)相比,制备的纳米复合材料的拉伸强度性能增强(18.58 MPa)。凝血试验表明,与原始PU(活化部分凝血活酶时间(APTT)-147.7±3.512 s,凝血酶原时间(PT)-84.67±2.517 s)相比,所制备的纳米复合材料的血液凝固时间延长,血液相容性增强(APTT-179±3.606 s,PT-105±2.646 s)。此外,溶血和细胞毒性研究表明,与PU膜相比,所制备的纳米复合材料的溶血指数较低,细胞活力率提高,毒性较小。观察到所制备的新型伤口敷料具有更好的物理化学性能和增强的血液相容性,可用于伤口愈合应用。