Suppr超能文献

使用石墨烯-金杂化纳米电极阵列实现增强的干细胞分化的无损实时监测。

Nondestructive Real-Time Monitoring of Enhanced Stem Cell Differentiation Using a Graphene-Au Hybrid Nanoelectrode Array.

机构信息

Department of Chemistry and Chemical Biology Institute for Advanced Materials, Devices and Nanotechnology (IAMDN), Rutgers University, Piscataway, NJ, 08854, USA.

Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Korea.

出版信息

Adv Mater. 2018 Sep;30(39):e1802762. doi: 10.1002/adma.201802762. Epub 2018 Aug 2.

Abstract

Stem cells have attracted increasing research interest in the field of regenerative medicine because of their unique ability to differentiate into multiple cell lineages. However, controlling stem cell differentiation efficiently and improving the current destructive characterization methods for monitoring stem cell differentiation are the critical issues. To this end, multifunctional graphene-gold (Au) hybrid nanoelectrode arrays (NEAs) to: (i) investigate the effects of combinatorial physicochemical cues on stem cell differentiation, (ii) enhance stem cell differentiation efficiency through biophysical cues, and (iii) characterize stem cell differentiation in a nondestructive real-time manner are developed. Through the synergistic effects of physiochemical properties of graphene and biophysical cues from nanoarrays, the graphene-Au hybrid NEAs facilitate highly enhanced cell adhesion and spreading behaviors. In addition, by varying the dimensions of the graphene-Au hybrid NEAs, improved stem cell differentiation efficiency, resulting from the increased focal adhesion signal, is shown. Furthermore, graphene-Au hybrid NEAs are utilized to monitor osteogenic differentiation of stem cells electrochemically in a nondestructive real-time manner. Collectively, it is believed the unique multifunctional graphene-Au hybrid NEAs can significantly advance stem-cell-based biomedical applications.

摘要

干细胞因其独特的分化为多种细胞谱系的能力,在再生医学领域引起了越来越多的研究兴趣。然而,有效地控制干细胞分化,并改进当前用于监测干细胞分化的破坏性特征化方法,是关键问题。为此,开发了多功能石墨烯-金(Au)杂化纳米电极阵列(NEAs),以:(i)研究组合物理化学线索对干细胞分化的影响,(ii)通过生物物理线索增强干细胞分化效率,以及(iii)以非破坏性实时方式对干细胞分化进行特征化。通过石墨烯的物理化学性质和纳米阵列的生物物理线索的协同作用,石墨烯-Au 杂化 NEAs 促进了高度增强的细胞黏附和铺展行为。此外,通过改变石墨烯-Au 杂化 NEAs 的尺寸,显示出由于增加的粘着斑信号而导致的改善的干细胞分化效率。此外,石墨烯-Au 杂化 NEAs 用于以非破坏性实时方式电化学监测干细胞的成骨分化。总之,相信独特的多功能石墨烯-Au 杂化 NEAs 可以显著推进基于干细胞的生物医学应用。

相似文献

1
Nondestructive Real-Time Monitoring of Enhanced Stem Cell Differentiation Using a Graphene-Au Hybrid Nanoelectrode Array.
Adv Mater. 2018 Sep;30(39):e1802762. doi: 10.1002/adma.201802762. Epub 2018 Aug 2.
2
Dual-Enhanced Raman Scattering-Based Characterization of Stem Cell Differentiation Using Graphene-Plasmonic Hybrid Nanoarray.
Nano Lett. 2019 Nov 13;19(11):8138-8148. doi: 10.1021/acs.nanolett.9b03402. Epub 2019 Nov 1.
3
Enhancing osteogenesis of adipose-derived mesenchymal stem cells using gold nanostructure/peptide-nanopatterned graphene oxide.
Colloids Surf B Biointerfaces. 2021 Aug;204:111807. doi: 10.1016/j.colsurfb.2021.111807. Epub 2021 Apr 29.
5
Large-Scale Nanoelectrode Arrays to Monitor the Dopaminergic Differentiation of Human Neural Stem Cells.
Adv Mater. 2015 Nov 4;27(41):6356-62. doi: 10.1002/adma.201502489. Epub 2015 Sep 21.
7
Enhanced Osteogenic Differentiation of Stem Cells on Phase-Engineered Graphene Oxide.
ACS Appl Mater Interfaces. 2018 Apr 18;10(15):12497-12503. doi: 10.1021/acsami.8b02225. Epub 2018 Apr 9.
10
Size-dependent effects of graphene oxide on the osteogenesis of human adipose-derived mesenchymal stem cells.
Colloids Surf B Biointerfaces. 2018 Sep 1;169:20-29. doi: 10.1016/j.colsurfb.2018.04.053. Epub 2018 Apr 27.

引用本文的文献

2
Progress in Nano-Biosensors for Non-Invasive Monitoring of Stem Cell Differentiation.
Biosensors (Basel). 2023 Apr 26;13(5):501. doi: 10.3390/bios13050501.
3
Inorganic Nanoparticles-Based Systems in Biomedical Applications of Stem Cells: Opportunities and Challenges.
Int J Nanomedicine. 2023 Jan 7;18:143-182. doi: 10.2147/IJN.S384343. eCollection 2023.
4
Recent Advances in Electrochemical Biosensors for Monitoring Animal Cell Function and Viability.
Biosensors (Basel). 2022 Dec 13;12(12):1162. doi: 10.3390/bios12121162.
5
A non-invasive smart scaffold for bone repair and monitoring.
Bioact Mater. 2022 May 6;19:499-510. doi: 10.1016/j.bioactmat.2022.04.034. eCollection 2023 Jan.
6
A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors.
RSC Adv. 2019 Mar 18;9(16):8778-8881. doi: 10.1039/c8ra09577a. eCollection 2019 Mar 15.
8
Electrochemical Cell Chips Based on Functionalized Nanometals.
Front Chem. 2021 May 6;9:671922. doi: 10.3389/fchem.2021.671922. eCollection 2021.

本文引用的文献

1
Stimulation of 3D osteogenesis by mesenchymal stem cells using a nanovibrational bioreactor.
Nat Biomed Eng. 2017 Sep;1(9):758-770. doi: 10.1038/s41551-017-0127-4. Epub 2017 Sep 12.
2
Harnessing Sphingosine-1-Phosphate Signaling and Nanotopographical Cues To Regulate Skeletal Muscle Maturation and Vascularization.
ACS Nano. 2017 Dec 26;11(12):11954-11968. doi: 10.1021/acsnano.7b00186. Epub 2017 Nov 28.
4
Fate decision of mesenchymal stem cells: adipocytes or osteoblasts?
Cell Death Differ. 2016 Jul;23(7):1128-39. doi: 10.1038/cdd.2015.168. Epub 2016 Feb 12.
5
Large-Scale Nanoelectrode Arrays to Monitor the Dopaminergic Differentiation of Human Neural Stem Cells.
Adv Mater. 2015 Nov 4;27(41):6356-62. doi: 10.1002/adma.201502489. Epub 2015 Sep 21.
6
Nanotopographical Surfaces for Stem Cell Fate Control: Engineering Mechanobiology from the Bottom.
Nano Today. 2014 Dec 1;9(6):759-784. doi: 10.1016/j.nantod.2014.12.002.
8
Fabrication of RGD micro/nanopattern and corresponding study of stem cell differentiation.
Nano Lett. 2015 Mar 11;15(3):1457-67. doi: 10.1021/nl5049862. Epub 2015 Feb 24.
9
From bench to FDA to bedside: US regulatory trends for new stem cell therapies.
Adv Drug Deliv Rev. 2015 Mar;82-83:192-6. doi: 10.1016/j.addr.2014.12.001. Epub 2014 Dec 7.
10
Appreciating force and shape—the rise of mechanotransduction in cell biology.
Nat Rev Mol Cell Biol. 2014 Dec;15(12):825-33. doi: 10.1038/nrm3903. Epub 2014 Oct 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验