Bao Yu, Hayashida Morihiro, Liu Pengyu, Ishitsuka Masayuki, Nacher Jose C, Akutsu Tatsuya
1 Bioinformatics Center, Institute for Chemical Research, Kyoto University , Uji, Japan .
2 Department of Electrical Engineering and Computer Science, National Institute of Technology , Matsue College, Matsue, Japan .
J Comput Biol. 2018 Oct;25(10):1071-1090. doi: 10.1089/cmb.2018.0019. Epub 2018 Aug 3.
Controlling complex networks through a small number of controller vertices is of great importance in wide-ranging research fields. Recently, a new approach based on the minimum feedback vertex set (MFVS) has been proposed to find such vertices in directed networks in which the target states are restricted to steady states. However, multiple MFVS configurations may exist and thus the selection of vertices may depend on algorithms and input data representations. Our attempts to address this ambiguity led us to adopt an existing approach that classifies vertices into three categories. This approach has been successfully applied to maximum matching-based and minimum dominating set-based controllability analysis frameworks. In this article, we present an algorithm as well as its implementation to compute and evaluate the critical, intermittent, and redundant vertices under the MFVS-based framework, where these three categories include vertices belonging to all MFVSs, some (but not all) MFVSs, and none of the MFVSs, respectively. The results of computational experiments using artificially generated networks and real-world biological networks suggest that the proposed algorithm is useful for identifying these three kinds of vertices for relatively large-scale networks, and that the fraction of critical and intermittent vertices is considerably small. Moreover, an analysis of the signal pathways indicates that critical and intermittent MFVSs tend to be enriched by essential genes.
通过少量控制顶点来控制复杂网络在广泛的研究领域中具有重要意义。最近,一种基于最小反馈顶点集(MFVS)的新方法被提出来在有向网络中寻找这样的顶点,其中目标状态被限制为稳态。然而,可能存在多个MFVS配置,因此顶点的选择可能取决于算法和输入数据表示。我们解决这种模糊性的尝试使我们采用了一种现有的方法,该方法将顶点分为三类。这种方法已成功应用于基于最大匹配和基于最小支配集的可控性分析框架。在本文中,我们提出了一种算法及其实现,用于在基于MFVS的框架下计算和评估关键顶点、间歇顶点和冗余顶点,这三类顶点分别包括属于所有MFVS的顶点、属于部分(但不是全部)MFVS的顶点以及不属于任何MFVS的顶点。使用人工生成的网络和真实世界生物网络进行的计算实验结果表明,所提出的算法对于识别相对大规模网络中的这三种顶点很有用,并且关键顶点和间歇顶点的比例相当小。此外,对信号通路的分析表明,关键和间歇的MFVS往往富含必需基因。