Suppr超能文献

抑制性神经元在皮质微连接组中表现出很强的控制能力。

Inhibitory neurons exhibit high controlling ability in the cortical microconnectome.

机构信息

Graduate Schools of Medicine, Kyoto University, Kyoto, Japan.

Department of Physics and Center for Complex Systems, National Central University, Taiwan, Republic of China.

出版信息

PLoS Comput Biol. 2021 Apr 8;17(4):e1008846. doi: 10.1371/journal.pcbi.1008846. eCollection 2021 Apr.

Abstract

The brain is a network system in which excitatory and inhibitory neurons keep activity balanced in the highly non-random connectivity pattern of the microconnectome. It is well known that the relative percentage of inhibitory neurons is much smaller than excitatory neurons in the cortex. So, in general, how inhibitory neurons can keep the balance with the surrounding excitatory neurons is an important question. There is much accumulated knowledge about this fundamental question. This study quantitatively evaluated the relatively higher functional contribution of inhibitory neurons in terms of not only properties of individual neurons, such as firing rate, but also in terms of topological mechanisms and controlling ability on other excitatory neurons. We combined simultaneous electrical recording (~2.5 hours) of ~1000 neurons in vitro, and quantitative evaluation of neuronal interactions including excitatory-inhibitory categorization. This study accurately defined recording brain anatomical targets, such as brain regions and cortical layers, by inter-referring MRI and immunostaining recordings. The interaction networks enabled us to quantify topological influence of individual neurons, in terms of controlling ability to other neurons. Especially, the result indicated that highly influential inhibitory neurons show higher controlling ability of other neurons than excitatory neurons, and are relatively often distributed in deeper layers of the cortex. Furthermore, the neurons having high controlling ability are more effectively limited in number than central nodes of k-cores, and these neurons also participate in more clustered motifs. In summary, this study suggested that the high controlling ability of inhibitory neurons is a key mechanism to keep balance with a large number of other excitatory neurons beyond simple higher firing rate. Application of the selection method of limited important neurons would be also applicable for the ability to effectively and selectively stimulate E/I imbalanced disease states.

摘要

大脑是一个网络系统,其中兴奋和抑制神经元通过微连接组的高度非随机连接模式保持活动平衡。众所周知,在皮层中,抑制神经元的相对百分比远小于兴奋神经元。因此,一般来说,抑制神经元如何与周围的兴奋神经元保持平衡是一个重要的问题。关于这个基本问题,已经有很多相关的知识积累。本研究从个体神经元的特性(如放电率)和拓扑机制以及对其他兴奋神经元的控制能力等方面,对抑制神经元的相对较高的功能贡献进行了定量评估。我们结合了体外约 1000 个神经元的同时电记录(~2.5 小时),以及包括兴奋性-抑制性分类在内的神经元相互作用的定量评估。本研究通过相互参照 MRI 和免疫染色记录,准确地定义了记录大脑解剖学目标,如大脑区域和皮层层。交互网络使我们能够量化个体神经元的拓扑影响,即对其他神经元的控制能力。特别是,结果表明,具有高度影响力的抑制神经元对其他神经元的控制能力比兴奋神经元更高,并且相对更经常分布在皮层的深层。此外,具有高控制能力的神经元的数量比 k-核心的中心节点更有效限制,并且这些神经元也参与了更多聚类的模式。总之,本研究表明,抑制神经元的高控制能力是与大量其他兴奋神经元保持平衡的关键机制,而不仅仅是简单的更高放电率。有限重要神经元选择方法的应用也适用于有效和选择性地刺激 E/I 失衡疾病状态的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5eeb/8031186/54adcb89d945/pcbi.1008846.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验