Suppr超能文献

一种用于鉴定有向概率生物网络中关键控制蛋白质的实用高效算法。

A practically efficient algorithm for identifying critical control proteins in directed probabilistic biological networks.

机构信息

Department of Information Science, Faculty of Science, Toho University, Funabashi, Chiba, Japan.

Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto, Uji, Japan.

出版信息

NPJ Syst Biol Appl. 2024 Aug 12;10(1):87. doi: 10.1038/s41540-024-00411-y.

Abstract

Network controllability is unifying the traditional control theory with the structural network information rooted in many large-scale biological systems of interest, from intracellular networks in molecular biology to brain neuronal networks. In controllability approaches, the set of minimum driver nodes is not unique, and critical nodes are the most important control elements because they appear in all possible solution sets. On the other hand, a common but largely unexplored feature in network control approaches is the probabilistic failure of edges or the uncertainty in the determination of interactions between molecules. This is particularly true when directed probabilistic interactions are considered. Until now, no efficient algorithm existed to determine critical nodes in probabilistic directed networks. Here we present a probabilistic control model based on a minimum dominating set framework that integrates the probabilistic nature of directed edges between molecules and determines the critical control nodes that drive the entire network functionality. The proposed algorithm, combined with the developed mathematical tools, offers practical efficiency in determining critical control nodes in large probabilistic networks. The method is then applied to the human intracellular signal transduction network revealing that critical control nodes are associated with important biological features and perturbed sets of genes in human diseases, including SARS-CoV-2 target proteins and rare disorders. We believe that the proposed methodology can be useful to investigate multiple biological systems in which directed edges are probabilistic in nature, both in natural systems or when determined with large uncertainties in-silico.

摘要

网络可控性将传统控制理论与根植于许多大型生物系统的结构网络信息(从分子生物学中的细胞内网络到大脑神经元网络)统一起来。在可控性方法中,最小驱动节点集不是唯一的,而关键节点是最重要的控制元素,因为它们出现在所有可能的解集。另一方面,网络控制方法中一个常见但在很大程度上未被探索的特征是边缘的概率性故障或分子间相互作用的确定不确定性。当考虑有向概率相互作用时,尤其如此。到目前为止,还没有有效的算法可以确定概率有向网络中的关键节点。在这里,我们提出了一种基于最小支配集框架的概率控制模型,该模型整合了分子间有向边缘的概率性质,并确定了驱动整个网络功能的关键控制节点。所提出的算法与开发的数学工具相结合,在确定大型概率网络中的关键控制节点方面提供了实际效率。该方法随后应用于人类细胞内信号转导网络,揭示了关键控制节点与人类疾病中的重要生物学特征和受扰基因集(包括 SARS-CoV-2 靶蛋白和罕见疾病)相关。我们相信,所提出的方法可以用于研究多种生物系统,其中有向边缘在自然系统中或在计算中存在较大不确定性时具有概率性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d027/11319667/054d037dc7fa/41540_2024_411_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验