From the School of Pharmacy, Anhui Medical University, Hefei 230032, China.
the Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, 30310.
J Biol Chem. 2018 Sep 14;293(37):14393-14406. doi: 10.1074/jbc.RA117.001032. Epub 2018 Aug 3.
High-glucose (HG) levels and hyperglycemia associated with diabetes are known to cause neuronal damage. The detailed molecular mechanisms, however, remain to be elucidated. Here, we investigated the role of transient receptor potential melastatin 7 (TRPM7) channels in HG-mediated endoplasmic reticulum stress (ERS) and injury of NS20Y neuronal cells. The cells were incubated in the absence or presence of HG for 48 h. We found that mRNA and protein levels of TRPM7 and of ERS-associated proteins, such as C/EBP homologous protein (CHOP), 78-kDa glucose-regulated protein (GRP78), and inducible nitric-oxide synthase (iNOS), increased in HG-treated cells, along with significantly increased TRPM7-associated currents in these cells. Similar results were obtained in cerebral cortical tissue from an insulin-deficiency model of diabetic mice. Moreover, HG treatment of cells activated ERS-associated proapoptotic caspase activity and induced cellular injury. Interestingly, a NOS inhibitor, l-NAME, suppressed the HG-induced increase of TRPM7 expression and cellular injury. siRNA-mediated TRPM7 knockdown or chemical inhibition of TRPM7 activity also suppressed HG-induced ERS and decreased cleaved caspase-12/caspase-3 levels and cell injury. Of note, TRPM7 overexpression increased ERS and cell injury independently of its kinase activity. Taken together, our findings suggest that TRPM7 channel activities play a key role in HG-associated ERS and cytotoxicity through an apoptosis-inducing signaling cascade involving HG, iNOS, TRPM7, ERS proteins, and caspases.
高糖(HG)水平和与糖尿病相关的高血糖已知会导致神经元损伤。然而,其详细的分子机制仍有待阐明。在这里,我们研究了瞬时受体电位 melastatin 7(TRPM7)通道在 HG 介导的内质网应激(ERS)和 NS20Y 神经元细胞损伤中的作用。将细胞在不存在或存在 HG 的情况下孵育 48 小时。我们发现,TRPM7 的 mRNA 和蛋白水平以及 ERS 相关蛋白(如 C/EBP 同源蛋白(CHOP)、78kDa 葡萄糖调节蛋白(GRP78)和诱导型一氧化氮合酶(iNOS))在 HG 处理的细胞中增加,同时这些细胞中 TRPM7 相关电流显著增加。在糖尿病小鼠胰岛素缺乏模型的大脑皮质组织中也获得了类似的结果。此外,HG 处理细胞激活了与 ERS 相关的促凋亡半胱氨酸蛋白酶活性并诱导了细胞损伤。有趣的是,NOS 抑制剂 l-NAME 抑制了 HG 诱导的 TRPM7 表达增加和细胞损伤。siRNA 介导的 TRPM7 敲低或 TRPM7 活性的化学抑制也抑制了 HG 诱导的 ERS 并降低了裂解的 caspase-12/caspase-3 水平和细胞损伤。值得注意的是,TRPM7 的过表达增加了 ERS 和细胞损伤,而不依赖于其激酶活性。总之,我们的研究结果表明,TRPM7 通道活性通过涉及 HG、iNOS、TRPM7、ERS 蛋白和半胱氨酸蛋白酶的凋亡诱导信号级联反应,在 HG 相关的 ERS 和细胞毒性中发挥关键作用。