Suppr超能文献

脉冲反转增强了基于微泡的超声治疗的被动成像。

Pulse inversion enhances the passive mapping of microbubble-based ultrasound therapy.

作者信息

Pouliopoulos Antonios N, Burgess Mark T, Konofagou Elisa E

机构信息

Department of Biomedical Engineering, Columbia University, New York City, New York 10032, USA.

出版信息

Appl Phys Lett. 2018 Jul 23;113(4):044102. doi: 10.1063/1.5036516. Epub 2018 Jul 24.

Abstract

Therapeutic ultrasound combined with preformed circulating microbubbles has enabled non-invasive and targeted drug delivery into the brain, tumors, and blood clots. Monitoring the microbubble activity is essential for the success of such therapies; however, skull and tissues limit our ability to detect low acoustic signals. Here, we show that by emitting consecutive therapeutic pulses of inverse polarity, the sensitivity in the detection of weak bubble acoustic signals during blood-brain barrier opening is enhanced compared to therapeutic pulses of the same polarity. Synchronous passive mapping of the cavitation activity was conducted using delay-and-sum beamforming with absolute time delays, which offers superior spatial resolution compared to the existing asynchronous passive imaging techniques. Sonication with pulse inversion allowed filter-free suppression of the tissue signals by up to 8 dB in a tissue-mimicking phantom and by 7 dB compared to exposure without pulse inversion, enabling enhanced passive mapping of microbubble activity. Both therapeutic schemes resulted in similar free-field microbubble activation and efficient blood-brain barrier opening .

摘要

治疗性超声与预先形成的循环微泡相结合,已能够将药物无创且靶向地递送至大脑、肿瘤和血栓部位。监测微泡活性对于此类治疗的成功至关重要;然而,颅骨和组织限制了我们检测低声学信号的能力。在此,我们表明,与相同极性的治疗脉冲相比,通过发射连续的反极性治疗脉冲,在血脑屏障开放期间检测微弱气泡声学信号的灵敏度得以提高。使用具有绝对时间延迟的延迟求和波束形成对空化活性进行同步被动映射,与现有的异步被动成像技术相比,其提供了更高的空间分辨率。与无脉冲反转的暴露相比,在组织模拟体模中,脉冲反转超声处理可实现无滤波器的组织信号抑制,抑制幅度高达8dB,在实际组织中可抑制7dB,从而增强了微泡活性的被动映射。两种治疗方案均导致类似的自由场微泡激活和有效的血脑屏障开放。

相似文献

1
Pulse inversion enhances the passive mapping of microbubble-based ultrasound therapy.
Appl Phys Lett. 2018 Jul 23;113(4):044102. doi: 10.1063/1.5036516. Epub 2018 Jul 24.
2
Passive acoustic mapping with absolute time-of-flight information and delay-multiply-sum beamforming.
Med Phys. 2023 Apr;50(4):2323-2335. doi: 10.1002/mp.16248. Epub 2023 Feb 7.
3
Superharmonic microbubble Doppler effect in ultrasound therapy.
Phys Med Biol. 2016 Aug 21;61(16):6154-71. doi: 10.1088/0031-9155/61/16/6154. Epub 2016 Jul 29.
4
5
Power cavitation-guided blood-brain barrier opening with focused ultrasound and microbubbles.
Phys Med Biol. 2018 Mar 15;63(6):065009. doi: 10.1088/1361-6560/aab05c.
6
Three-dimensional transcranial microbubble imaging for guiding volumetric ultrasound-mediated blood-brain barrier opening.
Theranostics. 2018 Apr 16;8(11):2909-2926. doi: 10.7150/thno.24911. eCollection 2018.
7
Exploiting flow to control the in vitro spatiotemporal distribution of microbubble-seeded acoustic cavitation activity in ultrasound therapy.
Phys Med Biol. 2014 Nov 21;59(22):6941-57. doi: 10.1088/0031-9155/59/22/6941. Epub 2014 Oct 28.
8
A multi-frequency sparse hemispherical ultrasound phased array for microbubble-mediated transcranial therapy and simultaneous cavitation mapping.
Phys Med Biol. 2016 Dec 21;61(24):8476-8501. doi: 10.1088/0031-9155/61/24/8476. Epub 2016 Nov 15.
9
Effects of the microbubble shell physicochemical properties on ultrasound-mediated drug delivery to the brain.
J Control Release. 2015 Aug 28;212:30-40. doi: 10.1016/j.jconrel.2015.06.007. Epub 2015 Jun 9.

引用本文的文献

1
Reactive oxidative species (ROS)-based nanomedicine for BBB crossing and glioma treatment: current status and future directions.
Front Immunol. 2023 Sep 4;14:1241791. doi: 10.3389/fimmu.2023.1241791. eCollection 2023.
2
A PVDF Receiver for Acoustic Monitoring of Microbubble-Mediated Ultrasound Brain Therapy.
Sensors (Basel). 2023 Jan 26;23(3):1369. doi: 10.3390/s23031369.
3
Non-invasive optogenetics with ultrasound-mediated gene delivery and red-light excitation.
Brain Stimul. 2022 Jul-Aug;15(4):927-941. doi: 10.1016/j.brs.2022.06.007. Epub 2022 Jun 16.
4
Linear Signal Cancellation of Nonlinear Pulsing Schemes in a Verasonics Research Scanner.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 May;68(5):1721-1728. doi: 10.1109/TUFFC.2021.3050481. Epub 2021 Apr 26.
5
Contrast-Free Detection of Focused Ultrasound-Induced Blood-Brain Barrier Opening Using Diffusion Tensor Imaging.
IEEE Trans Biomed Eng. 2021 Aug;68(8):2499-2508. doi: 10.1109/TBME.2020.3047575. Epub 2021 Jul 16.
6
Focused Ultrasound-Mediated Blood-Brain Barrier Opening Increases Delivery and Efficacy of Etoposide for Glioblastoma Treatment.
Int J Radiat Oncol Biol Phys. 2021 Jun 1;110(2):539-550. doi: 10.1016/j.ijrobp.2020.12.019. Epub 2020 Dec 17.
7
8
A Clinical System for Non-invasive Blood-Brain Barrier Opening Using a Neuronavigation-Guided Single-Element Focused Ultrasound Transducer.
Ultrasound Med Biol. 2020 Jan;46(1):73-89. doi: 10.1016/j.ultrasmedbio.2019.09.010. Epub 2019 Oct 25.
9
Enhanced Detection of Bubble Emissions Through the Intact Spine for Monitoring Ultrasound-Mediated Blood-Spinal Cord Barrier Opening.
IEEE Trans Biomed Eng. 2020 May;67(5):1387-1396. doi: 10.1109/TBME.2019.2936972. Epub 2019 Aug 22.
10
Advances in acoustic monitoring and control of focused ultrasound-mediated increases in blood-brain barrier permeability.
Br J Radiol. 2019 Apr;92(1096):20180601. doi: 10.1259/bjr.20180601. Epub 2019 Feb 28.

本文引用的文献

1
Power cavitation-guided blood-brain barrier opening with focused ultrasound and microbubbles.
Phys Med Biol. 2018 Mar 15;63(6):065009. doi: 10.1088/1361-6560/aab05c.
2
Clustering dynamics of microbubbles exposed to low-pressure 1-MHz ultrasound.
J Acoust Soc Am. 2017 Nov;142(5):3135. doi: 10.1121/1.5010170.
3
Simultaneous Ultrasound Therapy and Monitoring of Microbubble-Seeded Acoustic Cavitation Using a Single-Element Transducer.
IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Aug;64(8):1234-1244. doi: 10.1109/TUFFC.2017.2718513. Epub 2017 Jun 22.
4
Passive Acoustic Mapping with the Angular Spectrum Method.
IEEE Trans Med Imaging. 2017 Apr;36(4):983-993. doi: 10.1109/TMI.2016.2643565. Epub 2016 Dec 21.
5
Quantitative Frequency-Domain Passive Cavitation Imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Jan;64(1):177-191. doi: 10.1109/TUFFC.2016.2620492. Epub 2016 Oct 25.
8
Superharmonic microbubble Doppler effect in ultrasound therapy.
Phys Med Biol. 2016 Aug 21;61(16):6154-71. doi: 10.1088/0031-9155/61/16/6154. Epub 2016 Jul 29.
9
Acoustic particle palpation for measuring tissue elasticity.
Appl Phys Lett. 2015 Nov 30;107(22):223701. doi: 10.1063/1.4936345. Epub 2015 Dec 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验