Suppr超能文献

超声聚焦联合微泡实现的声动力空化引导血脑屏障开放。

Power cavitation-guided blood-brain barrier opening with focused ultrasound and microbubbles.

机构信息

Department of Biomedical Engineering, Columbia University, New York, NY, United States of America.

出版信息

Phys Med Biol. 2018 Mar 15;63(6):065009. doi: 10.1088/1361-6560/aab05c.

Abstract

Image-guided monitoring of microbubble-based focused ultrasound (FUS) therapies relies on the accurate localization of FUS-stimulated microbubble activity (i.e. acoustic cavitation). Passive cavitation imaging with ultrasound arrays can achieve this, but with insufficient spatial resolution. In this study, we address this limitation and perform high-resolution monitoring of acoustic cavitation-mediated blood-brain barrier (BBB) opening with a new technique called power cavitation imaging. By synchronizing the FUS transmit and passive receive acquisition, high-resolution passive cavitation imaging was achieved by using delay and sum beamforming with absolute time delays. Since the axial image resolution is now dependent on the duration of the received acoustic cavitation emission, short pulses of FUS were used to limit its duration. Image sets were acquired at high-frame rates for calculation of power cavitation images analogous to power Doppler imaging. Power cavitation imaging displays the mean intensity of acoustic cavitation over time and was correlated with areas of acoustic cavitation-induced BBB opening. Power cavitation-guided BBB opening with FUS could constitute a standalone system that may not require MRI guidance during the procedure. The same technique can be used for other acoustic cavitation-based FUS therapies, for both safety and guidance.

摘要

基于微泡的聚焦超声(FUS)治疗的图像引导监测依赖于 FUS 刺激微泡活动(即声空化)的准确定位。超声阵列的被动式空化成像是可以实现这一目标的,但空间分辨率不足。在这项研究中,我们解决了这一限制,采用一种称为功率空化成像的新技术,对声空化介导的血脑屏障(BBB)开放进行高分辨率监测。通过同步 FUS 发射和被动接收采集,使用具有绝对时间延迟的延迟求和波束形成实现了高分辨率的被动式空化成像。由于轴向图像分辨率现在取决于接收声空化发射的持续时间,因此使用短的 FUS 脉冲来限制其持续时间。以高帧率采集图像集,以类似于功率多普勒成像的方式计算功率空化图像。功率空化成像显示了随时间的平均声空化强度,并与声空化诱导的 BBB 开放区域相关联。FUS 引导的功率空化 BBB 开放可以构成一个独立的系统,在该过程中可能不需要 MRI 引导。该技术还可用于其他基于声空化的 FUS 治疗,以实现安全性和引导性。

相似文献

10
Real-Time Passive Acoustic Mapping Using Sparse Matrix Multiplication.基于稀疏矩阵乘法的实时被动声纳测绘
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Jan;68(1):164-177. doi: 10.1109/TUFFC.2020.3001848. Epub 2020 Dec 23.

引用本文的文献

2
Focused Ultrasound: Noninvasive Image-Guided Therapy.聚焦超声:非侵入性图像引导治疗。
Invest Radiol. 2025 Mar 1;60(3):205-219. doi: 10.1097/RLI.0000000000001116. Epub 2024 Aug 21.
3
Acoustically targeted measurement of transgene expression in the brain.脑内转基因表达的声学靶向测量。
Sci Adv. 2024 Aug 9;10(32):eadj7686. doi: 10.1126/sciadv.adj7686. Epub 2024 Aug 7.

本文引用的文献

4
In vivo real-time cavitation imaging in moving organs.运动器官的体内实时空化成像。
Phys Med Biol. 2017 Feb 7;62(3):843-857. doi: 10.1088/1361-6560/aa4fe8. Epub 2017 Jan 10.
5
Passive Acoustic Mapping with the Angular Spectrum Method.基于角谱法的被动声学测绘
IEEE Trans Med Imaging. 2017 Apr;36(4):983-993. doi: 10.1109/TMI.2016.2643565. Epub 2016 Dec 21.
6
Quantitative Frequency-Domain Passive Cavitation Imaging.定量频域被动式声空化成像
IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Jan;64(1):177-191. doi: 10.1109/TUFFC.2016.2620492. Epub 2016 Oct 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验