Suppr超能文献

基于微观结构的连接组学:丰富健康和患病大脑的大规模描述。

Microstructure-Informed Connectomics: Enriching Large-Scale Descriptions of Healthy and Diseased Brains.

机构信息

1 Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.

2 NeuroImaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.

出版信息

Brain Connect. 2019 Mar;9(2):113-127. doi: 10.1089/brain.2018.0587. Epub 2018 Nov 16.

Abstract

Rapid advances in neuroimaging and network science have produced powerful tools and measures to appreciate human brain organization at multiple spatial and temporal scales. It is now possible to obtain increasingly meaningful representations of whole-brain structural and functional brain networks and to formally assess macroscale principles of network topology. In addition to its utility in characterizing healthy brain organization, individual variability, and life span-related changes, there is high promise of network neuroscience for the conceptualization and, ultimately, management of brain disorders. In the current review, we argue for a science of the human brain that, while strongly embracing macroscale connectomics, also recommends awareness of brain properties derived from meso- and microscale resolutions. Such features include MRI markers of tissue microstructure, local functional properties, as well as information from nonimaging domains, including cellular, genetic, or chemical data. Integrating these measures with connectome models promises to better define the individual elements that constitute large-scale networks, and clarify the notion of connection strength among them. By enriching the description of large-scale networks, this approach may improve our understanding of fundamental principles of healthy brain organization. Notably, it may also better define the substrate of prevalent brain disorders, including stroke, autism, as well as drug-resistant epilepsies that are each characterized by intriguing interactions between local anomalies and network-level perturbations.

摘要

神经影像学和网络科学的快速发展已经产生了强大的工具和方法,可以在多个时空尺度上欣赏人类大脑的组织。现在已经可以获得越来越有意义的全脑结构和功能脑网络表示,并正式评估网络拓扑的宏观原则。除了在描述健康大脑组织、个体变异性和与寿命相关的变化方面具有实用性外,网络神经科学在概念化和最终管理大脑疾病方面也具有很高的潜力。在当前的综述中,我们主张对人类大脑进行科学研究,既要强烈接受宏观尺度的连接组学,也要意识到从中尺度和微观尺度得出的大脑特性。这些特征包括 MRI 标记的组织微观结构、局部功能特性以及来自非成像领域的信息,包括细胞、遗传或化学数据。将这些测量值与连接组模型相结合,有望更好地定义构成大规模网络的个体元素,并阐明它们之间的连接强度概念。通过丰富对大规模网络的描述,这种方法可以提高我们对健康大脑组织基本原理的理解。值得注意的是,它还可能更好地定义常见大脑疾病的基础,包括中风、自闭症以及耐药性癫痫,这些疾病的特征是局部异常和网络级别的扰动之间存在有趣的相互作用。

相似文献

2
Meta-connectomics: human brain network and connectivity meta-analyses.元连接组学:人类脑网络与连接性荟萃分析
Psychol Med. 2016 Apr;46(5):897-907. doi: 10.1017/S0033291715002895. Epub 2016 Jan 26.
6
Fledgling pathoconnectomics of psychiatric disorders.精神障碍的雏生病理连接组学。
Trends Cogn Sci. 2013 Dec;17(12):641-7. doi: 10.1016/j.tics.2013.10.007. Epub 2013 Nov 15.
8
Large scale brain models of epilepsy: dynamics meets connectomics.大规模脑癫痫模型:动力学与连接组学的结合。
J Neurol Neurosurg Psychiatry. 2012 Dec;83(12):1238-48. doi: 10.1136/jnnp-2011-301944. Epub 2012 Aug 23.
9
10
Depression, neuroimaging and connectomics: a selective overview.抑郁、神经影像学与连接组学:选择性综述。
Biol Psychiatry. 2015 Feb 1;77(3):223-235. doi: 10.1016/j.biopsych.2014.08.009. Epub 2014 Aug 23.

引用本文的文献

7
Towards a biologically annotated brain connectome.迈向具有生物学注释的脑连接组学。
Nat Rev Neurosci. 2023 Dec;24(12):747-760. doi: 10.1038/s41583-023-00752-3. Epub 2023 Oct 17.

本文引用的文献

2
Points of Significance: Machine learning: a primer.要点:机器学习:入门。
Nat Methods. 2017 Nov 30;14(12):1119-1120. doi: 10.1038/nmeth.4526.
3
Idiosyncratic organization of cortical networks in autism spectrum disorder.自闭症谱系障碍中皮质网络的独特组织。
Neuroimage. 2019 Apr 15;190:182-190. doi: 10.1016/j.neuroimage.2018.01.022. Epub 2018 Jan 31.
8
Brain network dynamics are hierarchically organized in time.大脑网络动力学在时间上是分层组织的。
Proc Natl Acad Sci U S A. 2017 Nov 28;114(48):12827-12832. doi: 10.1073/pnas.1705120114. Epub 2017 Oct 30.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验