Tsubaki Masashi, Mizoguchi Teruyasu
National Institute of Advanced Industrial Science and Technology (AIST) , Tokyo Waterfront General BIO-IT Research Building, 2-3-26 Aomi , Koto-ku, Tokyo 135-0064 , Japan.
Institute of Industrial Science , University of Tokyo , 4-6-1 Komaba , Meguro-Ku, Tokyo 153-8505 , Japan.
J Phys Chem Lett. 2018 Oct 4;9(19):5733-5741. doi: 10.1021/acs.jpclett.8b01837. Epub 2018 Sep 18.
The discovery of molecules with specific properties is crucial to developing effective materials and useful drugs. Recently, to accelerate such discoveries with machine learning, deep neural networks (DNNs) have been applied to quantum chemistry calculations based on the density functional theory (DFT). While various DNNs for quantum chemistry have been proposed, these networks require various chemical descriptors as inputs and a large number of learning parameters to model atomic interactions. In this paper, we propose a new DNN-based molecular property prediction that (i) does not depend on descriptors, (ii) is more compact, and (iii) involves additional neural networks to model the interactions between all the atoms in a molecular structure. In the consideration of the molecular structure, we also model the potentials between all the atoms; this allows the neural networks to simultaneously learn the atomic interactions and potentials. We emphasize that these atomic "pair" interactions and potentials are characterized using the global molecular structure, a function of the depth of the neural networks; this leads to the implicit or indirect consideration of atomic "many-body" interactions and potentials within the DNNs. In the evaluation of our model with the benchmark QM9 data set, we achieved fast and accurate prediction performances for various quantum chemical properties. In addition, we analyzed the effects of learning the interactions and potentials on each property. Furthermore, we demonstrated an extrapolation evaluation, i.e., we trained a model with small molecules and tested it with large molecules. We believe that insights into the extrapolation evaluation will be useful for developing more practical applications in DNN-based molecular property predictions.
发现具有特定性质的分子对于开发有效的材料和有用的药物至关重要。最近,为了通过机器学习加速此类发现,深度神经网络(DNN)已应用于基于密度泛函理论(DFT)的量子化学计算。虽然已经提出了各种用于量子化学的DNN,但这些网络需要各种化学描述符作为输入以及大量学习参数来对原子相互作用进行建模。在本文中,我们提出了一种基于DNN的新分子性质预测方法,该方法(i)不依赖于描述符,(ii)更紧凑,并且(iii)涉及额外的神经网络来对分子结构中所有原子之间的相互作用进行建模。在考虑分子结构时,我们还对所有原子之间的势能进行建模;这使得神经网络能够同时学习原子相互作用和势能。我们强调,这些原子“对”相互作用和势能是使用全局分子结构来表征的,全局分子结构是神经网络深度的函数;这导致在DNN中隐式或间接考虑原子“多体”相互作用和势能。在使用基准QM9数据集对我们的模型进行评估时,我们在各种量子化学性质方面实现了快速且准确的预测性能。此外,我们分析了学习相互作用和势能对每种性质的影响。此外,我们展示了一种外推评估,即我们用小分子训练模型并用大分子进行测试。我们相信,对外推评估的深入了解将有助于在基于DNN的分子性质预测中开发更实际的应用。