Suppr超能文献

量子深度场:基于数据驱动的波函数、电子密度生成以及利用机器学习进行原子化能量预测与外推

Quantum Deep Field: Data-Driven Wave Function, Electron Density Generation, and Atomization Energy Prediction and Extrapolation with Machine Learning.

作者信息

Tsubaki Masashi, Mizoguchi Teruyasu

机构信息

National Institute of Advanced Industrial Science and Technology, 2-3-26 Aomi, Koto-ku, Tokyo 135-0064, Japan.

Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.

出版信息

Phys Rev Lett. 2020 Nov 13;125(20):206401. doi: 10.1103/PhysRevLett.125.206401.

Abstract

Deep neural networks (DNNs) have been used to successfully predict molecular properties calculated based on the Kohn-Sham density functional theory (KS-DFT). Although this prediction is fast and accurate, we believe that a DNN model for KS-DFT must not only predict the properties but also provide the electron density of a molecule. This Letter presents the quantum deep field (QDF), which provides the electron density with an unsupervised but end-to-end physics-informed modeling by learning the atomization energy on a large-scale dataset. QDF performed well at atomization energy prediction, generated valid electron density, and demonstrated extrapolation.

摘要

深度神经网络(DNN)已被成功用于预测基于科恩-沈(Kohn-Sham)密度泛函理论(KS-DFT)计算得到的分子性质。尽管这种预测快速且准确,但我们认为用于KS-DFT的DNN模型不仅要预测性质,还应提供分子的电子密度。本文提出了量子深度场(QDF),它通过在大规模数据集上学习原子化能,以无监督但端到端的物理信息建模方式提供电子密度。QDF在原子化能预测方面表现良好,生成了有效的电子密度,并展示了外推能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验