Suppr超能文献

代谢分解与化学物质摄取之间的统计关系可预测不同化学暴露情况下的生物浓缩因子数据。

Statistical relationship between metabolic decomposition and chemical uptake predicts bioconcentration factor data for diverse chemical exposures.

作者信息

Rowland Michael A, Wear Hannah, Watanabe Karen H, Gust Kurt A, Mayo Michael L

机构信息

Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS, USA.

Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA.

出版信息

BMC Syst Biol. 2018 Aug 7;12(1):81. doi: 10.1186/s12918-018-0601-y.

Abstract

BACKGROUND

A challenge of in vitro to in vivo extrapolation (IVIVE) is to predict the physical state of organisms exposed to chemicals in the environment from in vitro exposure assay data. Although toxicokinetic modeling approaches promise to bridge in vitro screening data with in vivo effects, they are often encumbered by a need for redesign or re-parameterization when applied to different tissues or chemicals.

RESULTS

We demonstrate a parameterization of reverse toxicokinetic (rTK) models developed for the adult zebrafish (Danio rerio) based upon particle swarm optimizations (PSO) of the chemical uptake and degradation rates that predict bioconcentration factors (BCF) for a broad range of chemicals. PSO reveals a relationship between chemical uptake and decomposition parameter values that predicts chemical-specific BCF values with moderate statistical agreement to a limited yet diverse chemical dataset, and all without a need to retrain the model to new data.

CONCLUSIONS

The presented model requires only the octanol-water partitioning ratio to predict BCFs to a fidelity consistent with existing QSAR models. This success begs re-evaluation of the modeling assumptions; specifically, it suggests that chemical uptake into arterial blood may be limited by transport across gill membranes (diffusion) rather than by counter-current flow between gill lamellae (convection). Therefore, more detailed molecular modeling of aquatic respiration may further improve predictive accuracy of the rTK approach.

摘要

背景

体外到体内外推法(IVIVE)面临的一个挑战是根据体外暴露试验数据预测暴露于环境化学物质中的生物体的物理状态。尽管毒代动力学建模方法有望将体外筛选数据与体内效应联系起来,但当应用于不同组织或化学物质时,它们往往需要重新设计或重新参数化。

结果

我们展示了基于化学物质摄取和降解速率的粒子群优化(PSO)为成年斑马鱼(Danio rerio)开发的逆向毒代动力学(rTK)模型的参数化,该模型可预测多种化学物质的生物富集因子(BCF)。PSO揭示了化学物质摄取和分解参数值之间的关系,该关系以适度的统计一致性预测特定化学物质的BCF值,适用于有限但多样的化学数据集,且无需对新数据重新训练模型。

结论

所提出的模型仅需辛醇-水分配比即可预测BCF,其保真度与现有QSAR模型一致。这一成功促使我们重新评估建模假设;具体而言,这表明化学物质进入动脉血可能受鳃膜转运(扩散)限制,而非鳃小片之间的逆流(对流)。因此,对水生呼吸进行更详细的分子建模可能会进一步提高rTK方法的预测准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd64/6081876/e9c11baf97c4/12918_2018_601_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验