Suppr超能文献

环鸟苷酸选择性 PDE5 抑制剂与 PDE9 抑制剂对心脏疾病中 microRNA 调节的显著差异。

Marked disparity of microRNA modulation by cGMP-selective PDE5 versus PDE9 inhibitors in heart disease.

机构信息

Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland, USA.

Cellular and Molecular Medicine Graduate Program, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

出版信息

JCI Insight. 2018 Aug 9;3(15). doi: 10.1172/jci.insight.121739.

Abstract

MicroRNAs (miRs) posttranscriptionally regulate mRNA and its translation into protein, and are considered master controllers of genes modulating normal physiology and disease. There is growing interest in how miRs change with drug treatment, and leveraging this for precision guided therapy. Here we contrast 2 closely related therapies, inhibitors of phosphodiesterase type 5 or type 9 (PDE5-I, PDE9-I), given to mice subjected to sustained cardiac pressure overload (PO). Both inhibitors augment cyclic guanosine monophosphate (cGMP) to activate protein kinase G, with PDE5-I regulating nitric oxide (NO) and PDE9-I natriuretic peptide-dependent signaling. While both produced strong phenotypic improvement of PO pathobiology, they surprisingly showed binary differences in miR profiles; PDE5-I broadly reduces more than 120 miRs, including nearly half those increased by PO, whereas PDE9-I has minimal impact on any miR (P < 0.0001). The disparity evolves after pre-miR processing and is organ specific. Lastly, even enhancing NO-coupled cGMP by different methods leads to altered miR regulation. Thus, seemingly similar therapeutic interventions can be barcoded by profound differences in miR signatures, and reversing disease-associated miR changes is not required for therapy success.

摘要

微小 RNA(miRs)通过转录后调控 mRNA 及其翻译成蛋白质的过程,被认为是调节正常生理和疾病的基因的主要控制器。人们越来越关注 miRs 如何随药物治疗而变化,并利用这一点进行精准导向治疗。在这里,我们对比了两种密切相关的治疗方法,即磷酸二酯酶 5 型或 9 型抑制剂(PDE5-I、PDE9-I),给予持续心脏压力超负荷(PO)的小鼠。这两种抑制剂都增加环鸟苷酸单磷酸(cGMP)以激活蛋白激酶 G,PDE5-I 调节一氧化氮(NO)和 PDE9-I 利钠肽依赖性信号。虽然这两种抑制剂都显著改善了 PO 病理生物学的表型,但它们的 miR 谱却存在明显的差异;PDE5-I 广泛减少了超过 120 种 miR,包括近一半由 PO 增加的 miR,而 PDE9-I 对任何 miR 的影响都很小(P < 0.0001)。这种差异在 pre-miR 加工后演变,并具有器官特异性。最后,即使通过不同的方法增强与 NO 偶联的 cGMP,也会导致 miR 调控的改变。因此,看似相似的治疗干预措施可能会因 miR 特征的巨大差异而被标记,而治疗成功并不需要逆转与疾病相关的 miR 变化。

相似文献

2
Phosphodiesterase 9A controls nitric-oxide-independent cGMP and hypertrophic heart disease.
Nature. 2015 Mar 26;519(7544):472-6. doi: 10.1038/nature14332. Epub 2015 Mar 18.
3
Cardiac Phosphodiesterases and Their Modulation for Treating Heart Disease.
Handb Exp Pharmacol. 2017;243:249-269. doi: 10.1007/164_2016_82.
5
Cyclic GMP-dependent signaling in cardiac myocytes.
Circ J. 2012;76(8):1819-25. doi: 10.1253/circj.cj-12-0664. Epub 2012 Jul 29.
7
CRD-733, a Novel PDE9 (Phosphodiesterase 9) Inhibitor, Reverses Pressure Overload-Induced Heart Failure.
Circ Heart Fail. 2021 Jan;14(1):e007300. doi: 10.1161/CIRCHEARTFAILURE.120.007300. Epub 2021 Jan 19.
9
Hemodynamic, Hormonal, and Renal Actions of Phosphodiesterase-9 Inhibition in Experimental Heart Failure.
J Am Coll Cardiol. 2019 Aug 20;74(7):889-901. doi: 10.1016/j.jacc.2019.05.067.
10
The NO/cGMP/PKG pathway in platelets: The therapeutic potential of PDE5 inhibitors in platelet disorders.
J Thromb Haemost. 2022 Nov;20(11):2465-2474. doi: 10.1111/jth.15844. Epub 2022 Aug 21.

引用本文的文献

1
Correlates of Plasma NT-proBNP/Cyclic GMP Ratio in Heart Failure With Preserved Ejection Fraction: An Analysis of the RELAX Trial.
J Am Heart Assoc. 2024 Apr 2;13(7):e031796. doi: 10.1161/JAHA.123.031796. Epub 2024 Mar 27.
3
Cyclic GMP and PKG Signaling in Heart Failure.
Front Pharmacol. 2022 Apr 11;13:792798. doi: 10.3389/fphar.2022.792798. eCollection 2022.
5
Current Modulation of Guanylate Cyclase Pathway Activity-Mechanism and Clinical Implications.
Molecules. 2021 Jun 4;26(11):3418. doi: 10.3390/molecules26113418.
6
treeclimbR pinpoints the data-dependent resolution of hierarchical hypotheses.
Genome Biol. 2021 May 17;22(1):157. doi: 10.1186/s13059-021-02368-1.
8
CRD-733, a Novel PDE9 (Phosphodiesterase 9) Inhibitor, Reverses Pressure Overload-Induced Heart Failure.
Circ Heart Fail. 2021 Jan;14(1):e007300. doi: 10.1161/CIRCHEARTFAILURE.120.007300. Epub 2021 Jan 19.
9
Phosphorylation Modifications Regulating Cardiac Protein Quality Control Mechanisms.
Front Physiol. 2020 Nov 12;11:593585. doi: 10.3389/fphys.2020.593585. eCollection 2020.
10
An update of cyclic nucleotide phosphodiesterase as a target for cardiac diseases.
Expert Opin Drug Discov. 2021 Feb;16(2):183-196. doi: 10.1080/17460441.2020.1821643. Epub 2020 Sep 21.

本文引用的文献

2
MicroRNAs Associated With Reverse Left Ventricular Remodeling in Humans Identify Pathways of Heart Failure Progression.
Circ Heart Fail. 2018 Feb;11(2):e004278. doi: 10.1161/CIRCHEARTFAILURE.117.004278.
3
Major depression and its treatment: microRNAs as peripheral biomarkers of diagnosis and treatment response.
Curr Opin Psychiatry. 2018 Jan;31(1):7-16. doi: 10.1097/YCO.0000000000000379.
5
An Argonaute phosphorylation cycle promotes microRNA-mediated silencing.
Nature. 2017 Feb 9;542(7640):197-202. doi: 10.1038/nature21025. Epub 2017 Jan 23.
6
Noncoding RNAs in Heart Failure.
Handb Exp Pharmacol. 2017;243:423-445. doi: 10.1007/164_2016_99.
7
Nanodomain Regulation of Cardiac Cyclic Nucleotide Signaling by Phosphodiesterases.
Annu Rev Pharmacol Toxicol. 2017 Jan 6;57:455-479. doi: 10.1146/annurev-pharmtox-010716-104756. Epub 2016 Oct 12.
8
PDE5 Inhibition Ameliorates Visceral Adiposity Targeting the miR-22/SIRT1 Pathway: Evidence From the CECSID Trial.
J Clin Endocrinol Metab. 2016 Apr;101(4):1525-34. doi: 10.1210/jc.2015-4252. Epub 2016 Mar 10.
9
MicroRNAs in heart failure: from biomarker to target for therapy.
Eur J Heart Fail. 2016 May;18(5):457-68. doi: 10.1002/ejhf.495. Epub 2016 Feb 11.
10
miRge - A Multiplexed Method of Processing Small RNA-Seq Data to Determine MicroRNA Entropy.
PLoS One. 2015 Nov 16;10(11):e0143066. doi: 10.1371/journal.pone.0143066. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验