Carvalho Sandhra M, Mansur Herman S, Ramanery Fábio P, Mansur Alexandra A P, Lobato Zelia I P, Leite Maria F
Center of Nanoscience , Nanotechnology and Innovation - CeNano2I , Department of Metallurgical and Materials Engineering , Federal University of Minas Gerais-UFMG , Brazil . Email:
Department of Preventive Veterinary Medicine , Federal University of Minas Gerais , Brazil.
Toxicol Res (Camb). 2016 Apr 14;5(4):1017-1028. doi: 10.1039/c6tx00039h. eCollection 2016 Jul 1.
Bioengineered hybrids are emerging as a new class of nanomaterials consisting of a biopolymer and inorganic semiconductors used in biomedical and environmental applications. The aim of the present work was to determine the cytocompatibility of novel water-soluble BiS quantum dots (QDs) functionalized with chitosan and -carboxymethyl chitosan (CMC) as capping ligands using an eco-friendly aqueous process at room temperature. These hybrid nanocomposites were tested for cytocompatibility using a 3-(4,5-dimethylthiazol-2yl) 2,5-diphenyl tetrazolium bromide (MTT) cell proliferation assay with cultured human osteosarcoma cells (SAOS), human embryonic kidney cells (HEK293T cells) and a LIVE/DEAD® viability-cytotoxicity assay. The results of the assays demonstrated that the CMC and chitosan-based nanohybrids were not cytotoxic and exhibited suitable cell viability responses. However, despite the "safe by design" approach used in this research, we have proved that the impact of the size, surface charge and biofunctionalization of the nanohybrids on cytotoxicity was cell type-dependent due to complex mechanisms. Thus, these novel bionanocomposites offer promising prospects for potential biomedical and pharmaceutical applications as fluorescent nanoprobes.
生物工程杂化物正作为一类新型纳米材料崭露头角,这类材料由生物聚合物和无机半导体组成,用于生物医学和环境应用领域。本研究的目的是在室温下采用环保水相工艺,确定用壳聚糖和羧甲基壳聚糖(CMC)作为封端配体功能化的新型水溶性硫化铋量子点(QDs)的细胞相容性。使用3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四氮唑溴盐(MTT)细胞增殖试验,对培养的人骨肉瘤细胞(SAOS)、人胚肾细胞(HEK293T细胞)进行测试,并结合活/死细胞活力-细胞毒性试验,来检测这些杂化纳米复合材料的细胞相容性。试验结果表明,基于CMC和壳聚糖的纳米杂化物没有细胞毒性,且表现出合适的细胞活力反应。然而,尽管本研究采用了“设计安全”的方法,但我们已证明,由于复杂的机制,纳米杂化物的尺寸、表面电荷和生物功能化对细胞毒性的影响因细胞类型而异。因此,这些新型生物纳米复合材料作为荧光纳米探针,在潜在的生物医学和制药应用方面具有广阔前景。