Department of Biochemistry, Konkuk University School of Medicine, Seoul, Korea.
Cancer Res Treat. 2019 Apr;51(2):672-684. doi: 10.4143/crt.2018.137. Epub 2018 Aug 10.
This study was conducted to develop and validate an individualized prediction model for automated detection of acquired taxane resistance (ATR).
Penalized regression, combinedwith an individualized pathway score algorithm,was applied to construct a predictive model using publically available genomic cohorts of ATR and intrinsic taxane resistance (ITR). To develop a model with enhanced generalizability, we merged multiple ATR studies then updated the learning parameter via robust cross-study validation.
For internal cross-study validation, the ATR model produced a perfect performance with an overall area under the receiver operating curve (AUROC) of 1.000 with an area under the precision-recall curve (AUPRC) of 1.000, a Brier score of 0.007, a sensitivity and a specificity of 100%. The model showed an excellent performance on two independent blind ATR cohorts (overall AUROC of 0.940, AUPRC of 0.940, a Brier score of 0.127). When we applied our algorithm to two large-scale pharmacogenomic resources for ITR, the Cancer Genome Project (CGP) and the Cancer Cell Line Encyclopedia (CCLE), an overall ITR cross-study AUROC was 0.70, which is a far better accuracy than an almost random level reported by previous studies. Furthermore, this model had a high transferability on blind ATR cohorts with an AUROC of 0.69, suggesting that general predictive features may be at work across both ITR and ATR.
We successfully constructed a multi-study-derived personalized prediction model for ATR with excellent accuracy, generalizability, and transferability.
本研究旨在开发和验证一种用于自动检测获得性紫杉醇耐药(ATR)的个体化预测模型。
采用惩罚回归结合个体化通路评分算法,利用公开的 ATR 和内在紫杉醇耐药(ITR)基因组队列构建预测模型。为了开发具有更强通用性的模型,我们合并了多个 ATR 研究,然后通过稳健的跨研究验证更新学习参数。
在内部跨研究验证中,ATR 模型表现出完美的性能,总体接收者操作特征曲线(AUROC)为 1.000,精度-召回曲线下面积(AUPRC)为 1.000,Brier 分数为 0.007,灵敏度和特异性均为 100%。该模型在两个独立的 ATR 盲法队列中表现出优异的性能(总体 AUROC 为 0.940,AUPRC 为 0.940,Brier 分数为 0.127)。当我们将我们的算法应用于两个大规模的药物基因组学资源(癌症基因组计划(CGP)和癌症细胞系百科全书(CCLE))进行 ITR 研究时,总体 ITR 跨研究 AUROC 为 0.70,这比之前研究报道的几乎随机水平的准确性要好得多。此外,该模型在 ATR 盲法队列中具有较高的可转移性,AUROC 为 0.69,表明一般预测特征可能在 ITR 和 ATR 中都起作用。
我们成功构建了一种基于多研究的 ATR 个体化预测模型,具有出色的准确性、通用性和可转移性。