Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia.
J Neural Eng. 2018 Oct;15(5):056032. doi: 10.1088/1741-2552/aad96d. Epub 2018 Aug 10.
Artificial modulation of peripheral nerve signals (neuromodulation) by electrical stimulation is an innovation with potential to develop treatments that replace or supplement drugs. One function of the nervous system that can be exploited by neuromodulation is regulation of disease intensity. Optimal interfacing of devices with the nervous system requires suitable models of peripheral nerve systems so that closed-loop control can be utilized for therapeutic benefit.
We use physiological data to model afferent signaling in the vagus nerve that carries information about inflammation in the small intestine to the brain.
The vagal nerve signaling system is distributed and complex; however, we propose a class of reductive models using a state-space formalism that can be tuned in a patient-specific manner.
These models provide excellent fits to a large range of nerve recording data but are computationally simple enough for feedback control in implantable neuromodulation devices.
通过电刺激对周围神经信号(神经调节)进行人为调节是一种创新,具有开发替代或补充药物治疗方法的潜力。神经调节可以利用的神经系统的一个功能是调节疾病强度。为了使设备与神经系统的接口达到最佳效果,需要合适的周围神经系统模型,以便可以利用闭环控制来获得治疗益处。
我们使用生理数据来对迷走神经的传入信号进行建模,迷走神经将小肠炎症的信息传递到大脑。
迷走神经信号系统分布广泛且复杂;但是,我们提出了一类使用状态空间形式主义的简化模型,这些模型可以以患者特异性的方式进行调整。
这些模型对大范围的神经记录数据提供了极好的拟合,但计算上足够简单,可用于植入式神经调节设备中的反馈控制。