Fraunhofer Institute for Laser Technology ILT, Steinbachstrasse 15, 52074 Aachen, Germany.
Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany.
J Mech Behav Biomed Mater. 2018 Nov;87:267-278. doi: 10.1016/j.jmbbm.2018.07.021. Epub 2018 Jul 17.
Complex 3D scaffolds with interconnected pores are a promising tool for bone regeneration. Such 3D scaffolds can be manufactured by selective laser sintering (SLS) from biodegradable composite powders. However, the mechanical strength of these scaffolds is often too low for medical application. We propose that the mechanical strength of laser-sintered scaffolds can be improved through composite powders with tailored properties (e.g., suitable powder particle size and melt viscosity for SLS). To prove this, two batches of a poly(D,L-lactide) (PDLLA)/β-tricalcium phosphate (β-TCP) composite powder with 50 wt% PDLLA and 50 wt% β-TCP were synthesized. The two batches differed in polymer particle size, filler particle size, and polymer molecular weight. Both batches were processed with identical SLS process parameters to study the extent to which the material properties influence how well a PDLLA/β-TCP (50/50) composite can be processed with SLS. In the SLS process, batch 2 showed improved melting behavior due to its smaller polymer particle size (approx. 35 µm vs. 50 µm) and its lower zero-shear melt viscosity (5800 Pa∙s vs. 17,900 Pa∙s). The better melting behavior of batch 2 led to SLS test specimens with lower porosity compared to batch 1. In consequence, the batch 2 specimens exhibited a larger biaxial bending strength (62 MPa) than the batch 1 specimens did (23 MPa). We conclude that a tailored composite powder with optimized polymer particle size, filler particle size, and polymer molecular weight can increase the achievable mechanical strength of laser-sintered scaffolds.
具有互连通孔的复杂 3D 支架是骨再生的有前途的工具。这种 3D 支架可以通过可生物降解的复合粉末的选择性激光烧结(SLS)来制造。然而,这些支架的机械强度通常对于医学应用来说太低了。我们提出,通过具有定制特性的复合粉末(例如,适用于 SLS 的粉末粒径和熔体粘度)可以提高激光烧结支架的机械强度。为了证明这一点,合成了两批具有 50wt% PDLLA 和 50wt%β-TCP 的聚(D,L-乳酸)(PDLLA)/β-磷酸三钙(β-TCP)复合粉末。两批粉末在聚合物粒径、填充剂粒径和聚合物分子量方面存在差异。两批粉末均采用相同的 SLS 工艺参数进行加工,以研究材料性能在多大程度上影响 PDLLA/β-TCP(50/50)复合粉末的 SLS 加工性能。在 SLS 加工过程中,由于其较小的聚合物粒径(约 35μm 与 50μm)和较低的零剪切熔体粘度(5800Pa∙s 与 17900Pa∙s),批 2 显示出改善的熔融行为。批 2 更好的熔融行为导致 SLS 测试样品的孔隙率低于批 1。因此,与批 1 相比,批 2 样品表现出更大的双向弯曲强度(62MPa)。我们得出结论,具有优化的聚合物粒径、填充剂粒径和聚合物分子量的定制复合粉末可以提高激光烧结支架的可实现机械强度。