School of Mathematics and Statistics, Xi'an Jiaotong University, China.
School of Mathematics and Statistics, Xi'an Jiaotong University, China; National Engineering Laboratory for Big Data Algorithm and Analysis Technology, China.
Med Image Anal. 2018 Oct;49:60-75. doi: 10.1016/j.media.2018.07.009. Epub 2018 Jul 31.
Multi-atlas segmentation approach is one of the most widely-used image segmentation techniques in biomedical applications. There are two major challenges in this category of methods, i.e., atlas selection and label fusion. In this paper, we propose a novel multi-atlas segmentation method that formulates multi-atlas segmentation in a deep learning framework for better solving these challenges. The proposed method, dubbed deep fusion net (DFN), is a deep architecture that integrates a feature extraction subnet and a non-local patch-based label fusion (NL-PLF) subnet in a single network. The network parameters are learned by end-to-end training for automatically learning deep features that enable optimal performance in a NL-PLF framework. The learned deep features are further utilized in defining a similarity measure for atlas selection. By evaluating on two public cardiac MR datasets of SATA-13 and LV-09 for left ventricle segmentation, our approach achieved 0.833 in averaged Dice metric (ADM) on SATA-13 dataset and 0.95 in ADM for epicardium segmentation on LV-09 dataset, comparing favorably with the other automatic left ventricle segmentation methods. We also tested our approach on Cardiac Atlas Project (CAP) testing set of MICCAI 2013 SATA Segmentation Challenge, and our method achieved 0.815 in ADM, ranking highest at the time of writing.
多图谱分割方法是生物医学应用中最广泛使用的图像分割技术之一。在这类方法中存在两个主要挑战,即图谱选择和标签融合。在本文中,我们提出了一种新的多图谱分割方法,该方法将多图谱分割在深度学习框架中进行公式化,以更好地解决这些挑战。所提出的方法称为深度融合网络(DFN),是一种深度架构,它将特征提取子网和基于非局部补丁的标签融合(NL-PLF)子网集成在单个网络中。该网络的参数通过端到端训练进行学习,以自动学习能够在 NL-PLF 框架中实现最佳性能的深度特征。所学习的深度特征进一步用于定义图谱选择的相似性度量。通过在 SATA-13 和 LV-09 两个公共心脏磁共振数据集上评估左心室分割,我们的方法在 SATA-13 数据集上的平均骰子度量(ADM)达到 0.833,在 LV-09 数据集上的心脏外膜分割的 ADM 达到 0.95,与其他自动左心室分割方法相比表现良好。我们还在 MICCAI 2013 SATA 分割挑战赛的心脏图谱项目(CAP)测试集中测试了我们的方法,我们的方法在 ADM 中达到 0.815,在撰写本文时排名最高。