Suppr超能文献

鸵鸟 Z 染色体的遗传图谱及倒位在鸟类性染色体进化中的作用。

A Genetic Map of Ostrich Z Chromosome and the Role of Inversions in Avian Sex Chromosome Evolution.

机构信息

Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala, Sweden.

出版信息

Genome Biol Evol. 2018 Aug 1;10(8):2049-2060. doi: 10.1093/gbe/evy163.

Abstract

Recombination arrest is a necessary step for the evolution of distinct sex chromosomes. Structural changes, such as inversions, may represent the mechanistic basis for recombination suppression and comparisons of the structural organization of chromosomes as given by chromosome-level assemblies offer the possibility to infer inversions across species at some detail. In birds, deduction of the process of sex chromosome evolution has been hampered by the lack of a validated chromosome-level assembly from a representative of one of the two basal clades of modern birds, Paleognathae. We therefore developed a high-density genetic linkage map of the ostrich Z chromosome and used this to correct an existing assembly, including correction of a large chimeric superscaffold and the order and orientation of other superscaffolds. We identified the pseudoautosomal region as a 52 Mb segment (≈60% of the Z chromosome) where recombination occurred in both sexes. By comparing the order and location of genes on the ostrich Z chromosome with that of six bird species from the other major clade of birds (Neognathae), and of reptilian outgroup species, 25 Z-linked inversions were inferred in the avian lineages. We defined Z chromosome organization in an early avian ancestor and identified inversions spanning the candidate sex-determining DMRT1 gene in this ancestor, which could potentially have triggered the onset of avian sex chromosome evolution. We conclude that avian sex chromosome evolution has been characterized by a complex process of probably both Z-linked and W-linked inversions (and/or other processes). This study illustrates the need for validated chromosome-level assemblies for inference of genome evolution.

摘要

重组抑制是不同性染色体进化的必要步骤。结构变化,如倒位,可能代表重组抑制的机制基础,并且比较染色体级别的染色体结构组织提供了推断物种间倒位的可能性,尽管细节程度有所不同。在鸟类中,由于缺乏现代鸟类两个基础分支之一(古颌总目)的代表性染色体级别的组装,因此性染色体进化过程的推断受到阻碍。因此,我们开发了鸵鸟 Z 染色体的高密度遗传连锁图谱,并利用该图谱纠正了现有的组装,包括纠正一个大型嵌合超级支架以及其他超级支架的顺序和方向。我们确定了假常染色体区域为一个 52Mb 的片段(约占 Z 染色体的 60%),在这个区域中,两性都发生了重组。通过比较鸵鸟 Z 染色体上基因的顺序和位置与其他鸟类主要分支(新颌总目)的六种鸟类物种以及爬行动物外群物种的顺序和位置,推断出在鸟类谱系中发生了 25 个 Z 连锁倒位。我们定义了早期鸟类祖先的 Z 染色体组织,并确定了在这个祖先中跨越候选性别决定基因 DMRT1 的倒位,这可能潜在地触发了鸟类性染色体进化的开始。我们得出结论,鸟类性染色体进化的特点是复杂的 Z 连锁和 W 连锁倒位(和/或其他过程)的混合。这项研究说明了为了推断基因组进化,需要验证染色体级别的组装。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d81f/6105114/0b337f85ad16/evy163f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验